{"title":"基于准 BIC 的线-圆偏振转换和传感元表面","authors":"Fa-Zhan Liu, Si-Yuan Liao, Qi-Juan Li, Jing-Wei Huang, Hai-Feng Zhang","doi":"10.1016/j.physe.2024.116128","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a multifunctional metastructure (MS) which realizes linear to circular polarization conversion and sensing function based on quasi-bound states in the continuum (quasi-BIC). MS is made of silicon dioxide as substrate, and silicon as surface material, by etching cross holes and square holes on it to form a 2×2 structure, through the transmission of terahertz (THz) band, to form an ultrahigh quality factor (<em>Q</em>-factor), and realize the conversion of linearly polarized waves to circularly polarized ones. At 178.190 THz, it achieves a <em>Q</em> value of 2969, and in the range 178.193 TH to 178.200 THz, the axial ratio (AR) is less than 3 dB and the insertion loss is less than 0.0001. In addition, by changing the permittivity of the surrounding environment, the minimum of the output wave will produce a good linear frequency shift. Using this feature, the given device can also be used as a dielectric constant sensor to detect air quality. The device has a sensing sensitivity (<em>S</em>) of 6.415 THz RIU<sup>−1</sup> and a figure of merit (<em>FOM</em>) of 106.9. The parameters (<em>H</em>, <em>w</em><sub>2</sub>, <em>L</em><sub>2</sub>, <em>g</em><sub>2</sub>), incidence angle (<em>θ</em>) and the polarization angle (<em>φ</em>) are discussed. The effects of different parameters on the <em>Q</em>-factor and AR were analyzed, which helped to select the optimal parameters. The design can also be used in communication and biosensing.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116128"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metasurface for linear-to-circular polarization conversion and sensing based on quasi-BIC\",\"authors\":\"Fa-Zhan Liu, Si-Yuan Liao, Qi-Juan Li, Jing-Wei Huang, Hai-Feng Zhang\",\"doi\":\"10.1016/j.physe.2024.116128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a multifunctional metastructure (MS) which realizes linear to circular polarization conversion and sensing function based on quasi-bound states in the continuum (quasi-BIC). MS is made of silicon dioxide as substrate, and silicon as surface material, by etching cross holes and square holes on it to form a 2×2 structure, through the transmission of terahertz (THz) band, to form an ultrahigh quality factor (<em>Q</em>-factor), and realize the conversion of linearly polarized waves to circularly polarized ones. At 178.190 THz, it achieves a <em>Q</em> value of 2969, and in the range 178.193 TH to 178.200 THz, the axial ratio (AR) is less than 3 dB and the insertion loss is less than 0.0001. In addition, by changing the permittivity of the surrounding environment, the minimum of the output wave will produce a good linear frequency shift. Using this feature, the given device can also be used as a dielectric constant sensor to detect air quality. The device has a sensing sensitivity (<em>S</em>) of 6.415 THz RIU<sup>−1</sup> and a figure of merit (<em>FOM</em>) of 106.9. The parameters (<em>H</em>, <em>w</em><sub>2</sub>, <em>L</em><sub>2</sub>, <em>g</em><sub>2</sub>), incidence angle (<em>θ</em>) and the polarization angle (<em>φ</em>) are discussed. The effects of different parameters on the <em>Q</em>-factor and AR were analyzed, which helped to select the optimal parameters. The design can also be used in communication and biosensing.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116128\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002327\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002327","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A metasurface for linear-to-circular polarization conversion and sensing based on quasi-BIC
This work presents a multifunctional metastructure (MS) which realizes linear to circular polarization conversion and sensing function based on quasi-bound states in the continuum (quasi-BIC). MS is made of silicon dioxide as substrate, and silicon as surface material, by etching cross holes and square holes on it to form a 2×2 structure, through the transmission of terahertz (THz) band, to form an ultrahigh quality factor (Q-factor), and realize the conversion of linearly polarized waves to circularly polarized ones. At 178.190 THz, it achieves a Q value of 2969, and in the range 178.193 TH to 178.200 THz, the axial ratio (AR) is less than 3 dB and the insertion loss is less than 0.0001. In addition, by changing the permittivity of the surrounding environment, the minimum of the output wave will produce a good linear frequency shift. Using this feature, the given device can also be used as a dielectric constant sensor to detect air quality. The device has a sensing sensitivity (S) of 6.415 THz RIU−1 and a figure of merit (FOM) of 106.9. The parameters (H, w2, L2, g2), incidence angle (θ) and the polarization angle (φ) are discussed. The effects of different parameters on the Q-factor and AR were analyzed, which helped to select the optimal parameters. The design can also be used in communication and biosensing.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures