Haniyeh Yousefi , Shima Akar , Hamid Niazmand , Seyed Ali Mousavi Shaegh
{"title":"提高扭曲微搅拌器的搅拌效率:横截面形状和偏心率的影响","authors":"Haniyeh Yousefi , Shima Akar , Hamid Niazmand , Seyed Ali Mousavi Shaegh","doi":"10.1016/j.cep.2024.110006","DOIUrl":null,"url":null,"abstract":"<div><div>Microfluidic mixers with twisted geometries show promise for high mixing efficiency, especially at elevated flow rates. However, there is a lack of understanding regarding the optimal geometrical parameters to enhance mixing across various Reynolds numbers. This study aimed to explore the influence of pitch number, cross-section geometry, and eccentricity ratio on the performance of the twisted micromixer. The flow field in these micromixers was solved numerically and the mixing index and pressure drop were calculated for Reynolds numbers of 1 to 400. Twisted micromixers with rectangular cross-sections and aspect ratios of 0.5 and 2 outperformed those with square cross-sections by up to 34% in mixing efficiency, exceeding 90% efficiency for Reynolds numbers from 1 to 400. Moreover, the eccentricity ratio (ER) was studied for the first time in twisted micromixers in this study and demonstrated a critical role in improving the mixing performance. For low to intermediate Reynolds numbers, the highest ER of 0.75 showed the best performance, while for high Reynolds numbers, an ER of 0.5 was optimal. These insights offer valuable direction for designing high-performance micromixers for advanced microfluidic systems.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 110006"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of mixing efficiency in twisted micromixers: The impact of cross-sectional shape and eccentricity ratio\",\"authors\":\"Haniyeh Yousefi , Shima Akar , Hamid Niazmand , Seyed Ali Mousavi Shaegh\",\"doi\":\"10.1016/j.cep.2024.110006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microfluidic mixers with twisted geometries show promise for high mixing efficiency, especially at elevated flow rates. However, there is a lack of understanding regarding the optimal geometrical parameters to enhance mixing across various Reynolds numbers. This study aimed to explore the influence of pitch number, cross-section geometry, and eccentricity ratio on the performance of the twisted micromixer. The flow field in these micromixers was solved numerically and the mixing index and pressure drop were calculated for Reynolds numbers of 1 to 400. Twisted micromixers with rectangular cross-sections and aspect ratios of 0.5 and 2 outperformed those with square cross-sections by up to 34% in mixing efficiency, exceeding 90% efficiency for Reynolds numbers from 1 to 400. Moreover, the eccentricity ratio (ER) was studied for the first time in twisted micromixers in this study and demonstrated a critical role in improving the mixing performance. For low to intermediate Reynolds numbers, the highest ER of 0.75 showed the best performance, while for high Reynolds numbers, an ER of 0.5 was optimal. These insights offer valuable direction for designing high-performance micromixers for advanced microfluidic systems.</div></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":\"205 \",\"pages\":\"Article 110006\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124003441\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003441","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Improvement of mixing efficiency in twisted micromixers: The impact of cross-sectional shape and eccentricity ratio
Microfluidic mixers with twisted geometries show promise for high mixing efficiency, especially at elevated flow rates. However, there is a lack of understanding regarding the optimal geometrical parameters to enhance mixing across various Reynolds numbers. This study aimed to explore the influence of pitch number, cross-section geometry, and eccentricity ratio on the performance of the twisted micromixer. The flow field in these micromixers was solved numerically and the mixing index and pressure drop were calculated for Reynolds numbers of 1 to 400. Twisted micromixers with rectangular cross-sections and aspect ratios of 0.5 and 2 outperformed those with square cross-sections by up to 34% in mixing efficiency, exceeding 90% efficiency for Reynolds numbers from 1 to 400. Moreover, the eccentricity ratio (ER) was studied for the first time in twisted micromixers in this study and demonstrated a critical role in improving the mixing performance. For low to intermediate Reynolds numbers, the highest ER of 0.75 showed the best performance, while for high Reynolds numbers, an ER of 0.5 was optimal. These insights offer valuable direction for designing high-performance micromixers for advanced microfluidic systems.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.