Hong Tian, Xuan Huang, Bin Zhao, Huang Zhang, Shan Cheng, Lei Liu
{"title":"木质素/谷氨酸共热解过程中氮转化机理及相互作用的研究","authors":"Hong Tian, Xuan Huang, Bin Zhao, Huang Zhang, Shan Cheng, Lei Liu","doi":"10.1016/j.jaap.2024.106795","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass pyrolysis has the potential to be transformed into valuable chemicals and fuels. Nitrogenous chemicals exert a substantial influence on the quality of bio-oil. Studying the impact of lignin on the transformation of nitrogen-containing elements in biomass during biomass pyrolysis is crucial for achieving efficient and effective utilization of biomass resources. In this study, tube furnace experiments, thermogravimetric infrared experiments (TG-FTIR), and gas chromatography-mass spectrometry (Py-GC/MS) were used to investigate the interactions of typical lignins (vanillin and syringol), nitrogenous components (glutamic acid), and the effect of lignin on the pyrolysis gas release of glutamic acid and the pyrolysis products during the co-pyrolysis process. In addition, the impact of lignin on the effect of pyrrolidone formation from glutamic acid was investigated in this study in conjunction with quantum chemical calculations. The experimental findings demonstrated that the co-pyrolysis of lignin and glutamic acid resulted in a reduction in the pyrolysis temperature. This reduction facilitated the release of HCN, NH<sub>3</sub>, and CO<sub>2</sub> while notably impeding the formation of nitrogen-containing compounds in the oil. The nitrogen concentration in the pyrolysis oil declined from 97 % to a range of 51.06–79.63 %, and the inhibitory impact decreased as the pyrolysis temperature increased. At an elevated pyrolysis temperature of 800 °C, lignin facilitated the decarboxylation process of glutamic acid, resulting in an increased production of pyrrolidone.Simulation results demonstrated that the lowest energy barrier paths were the dehydration condensation process and the Maillard reaction involving glutamic acid and lignin and their pyrolysis intermediates, with a particular competitive connection between the two pathways. The results explained the interaction mechanism between the two pyrolysis products and provided a fundamental theoretical basis for nitrogen conversion in biomass pyrolysis.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106795"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the mechanism and interaction of nitrogen conversion during lignin/glutamic acid co-pyrolysis\",\"authors\":\"Hong Tian, Xuan Huang, Bin Zhao, Huang Zhang, Shan Cheng, Lei Liu\",\"doi\":\"10.1016/j.jaap.2024.106795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass pyrolysis has the potential to be transformed into valuable chemicals and fuels. Nitrogenous chemicals exert a substantial influence on the quality of bio-oil. Studying the impact of lignin on the transformation of nitrogen-containing elements in biomass during biomass pyrolysis is crucial for achieving efficient and effective utilization of biomass resources. In this study, tube furnace experiments, thermogravimetric infrared experiments (TG-FTIR), and gas chromatography-mass spectrometry (Py-GC/MS) were used to investigate the interactions of typical lignins (vanillin and syringol), nitrogenous components (glutamic acid), and the effect of lignin on the pyrolysis gas release of glutamic acid and the pyrolysis products during the co-pyrolysis process. In addition, the impact of lignin on the effect of pyrrolidone formation from glutamic acid was investigated in this study in conjunction with quantum chemical calculations. The experimental findings demonstrated that the co-pyrolysis of lignin and glutamic acid resulted in a reduction in the pyrolysis temperature. This reduction facilitated the release of HCN, NH<sub>3</sub>, and CO<sub>2</sub> while notably impeding the formation of nitrogen-containing compounds in the oil. The nitrogen concentration in the pyrolysis oil declined from 97 % to a range of 51.06–79.63 %, and the inhibitory impact decreased as the pyrolysis temperature increased. At an elevated pyrolysis temperature of 800 °C, lignin facilitated the decarboxylation process of glutamic acid, resulting in an increased production of pyrrolidone.Simulation results demonstrated that the lowest energy barrier paths were the dehydration condensation process and the Maillard reaction involving glutamic acid and lignin and their pyrolysis intermediates, with a particular competitive connection between the two pathways. The results explained the interaction mechanism between the two pyrolysis products and provided a fundamental theoretical basis for nitrogen conversion in biomass pyrolysis.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106795\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004509\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004509","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
生物质热解有可能转化为有价值的化学品和燃料。含氮化学品对生物油的质量有很大影响。研究生物质热解过程中木质素对生物质中含氮元素转化的影响对于实现生物质资源的高效利用至关重要。本研究采用管式炉实验、热重红外实验(TG-FTIR)和气相色谱-质谱联用仪(Py-GC/MS)研究了典型木质素(香草醛和丁香酚)、含氮成分(谷氨酸)的相互作用,以及木质素在协同热解过程中对谷氨酸和热解产物的热解气体释放的影响。此外,本研究还结合量子化学计算研究了木质素对谷氨酸形成吡咯烷酮的影响。实验结果表明,木质素和谷氨酸共同热解可降低热解温度。温度降低有利于 HCN、NH3 和 CO2 的释放,同时明显阻碍了油中含氮化合物的形成。热解油中的氮浓度从 97% 降至 51.06%-79.63% 之间,随着热解温度的升高,抑制作用也随之减弱。模拟结果表明,能量障碍最低的途径是谷氨酸和木质素及其热解中间产物的脱水缩合过程和马氏反应,这两种途径之间存在特殊的竞争关系。研究结果解释了两种热解产物之间的相互作用机理,为生物质热解过程中的氮转化提供了基本理论依据。
Investigation of the mechanism and interaction of nitrogen conversion during lignin/glutamic acid co-pyrolysis
Biomass pyrolysis has the potential to be transformed into valuable chemicals and fuels. Nitrogenous chemicals exert a substantial influence on the quality of bio-oil. Studying the impact of lignin on the transformation of nitrogen-containing elements in biomass during biomass pyrolysis is crucial for achieving efficient and effective utilization of biomass resources. In this study, tube furnace experiments, thermogravimetric infrared experiments (TG-FTIR), and gas chromatography-mass spectrometry (Py-GC/MS) were used to investigate the interactions of typical lignins (vanillin and syringol), nitrogenous components (glutamic acid), and the effect of lignin on the pyrolysis gas release of glutamic acid and the pyrolysis products during the co-pyrolysis process. In addition, the impact of lignin on the effect of pyrrolidone formation from glutamic acid was investigated in this study in conjunction with quantum chemical calculations. The experimental findings demonstrated that the co-pyrolysis of lignin and glutamic acid resulted in a reduction in the pyrolysis temperature. This reduction facilitated the release of HCN, NH3, and CO2 while notably impeding the formation of nitrogen-containing compounds in the oil. The nitrogen concentration in the pyrolysis oil declined from 97 % to a range of 51.06–79.63 %, and the inhibitory impact decreased as the pyrolysis temperature increased. At an elevated pyrolysis temperature of 800 °C, lignin facilitated the decarboxylation process of glutamic acid, resulting in an increased production of pyrrolidone.Simulation results demonstrated that the lowest energy barrier paths were the dehydration condensation process and the Maillard reaction involving glutamic acid and lignin and their pyrolysis intermediates, with a particular competitive connection between the two pathways. The results explained the interaction mechanism between the two pyrolysis products and provided a fundamental theoretical basis for nitrogen conversion in biomass pyrolysis.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.