Fabian Diemar , John Holmes , Silvano Sommacal , David Aparici-Böhlke , Benno Böckl , Klaus Drechsler , Paul Compston
{"title":"利用 X 射线微型计算机断层扫描技术分析集成间隙和重叠的自动纤维铺放 (AFP) 层压板的机械性能","authors":"Fabian Diemar , John Holmes , Silvano Sommacal , David Aparici-Böhlke , Benno Böckl , Klaus Drechsler , Paul Compston","doi":"10.1016/j.compstruct.2024.118601","DOIUrl":null,"url":null,"abstract":"<div><div>Automated Fiber Placement (AFP) is a manufacturing technique widely used for the serial production of aerospace parts. A deep understanding of the effect of lay-up defects is crucial for part and lay-up design. Currently, numerical models for structural simulation lack a precise representation of the internal structure of AFP laminates, which is crucial for understanding the impact of defects on mechanical properties. This paper presents a novel approach based on high-resolution micro-computed tomography (micro-CT) scans from specimens manufactured with AFP, which automatically creates a mesoscale numerical model incorporating as-fabricated defect morphologies. The hexahedral mesh, generated from the segmented plies of the micro-CT volume, accounts for ply thickness and out-of-plane fiber orientation. This approach is verified with mechanical testing and digital image correlation (DIC) under tensile loading. The simulation results align closely with experimental testing and accurately illustrate the influence of fiber waviness in various defect configurations, such as gaps and overlaps. The study shows that lay-up defects can lead to knockdown factors of up to 12% in tensile properties, with each defect creating a distinct pattern in the local strain. This model can serve as a benchmark for further numerical simulations and surrogate models of defect configurations under varying loading conditions.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118601"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-ray micro-computed tomography for mechanical behaviour analysis of Automated Fiber Placement (AFP) laminates with integrated gaps and overlaps\",\"authors\":\"Fabian Diemar , John Holmes , Silvano Sommacal , David Aparici-Böhlke , Benno Böckl , Klaus Drechsler , Paul Compston\",\"doi\":\"10.1016/j.compstruct.2024.118601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated Fiber Placement (AFP) is a manufacturing technique widely used for the serial production of aerospace parts. A deep understanding of the effect of lay-up defects is crucial for part and lay-up design. Currently, numerical models for structural simulation lack a precise representation of the internal structure of AFP laminates, which is crucial for understanding the impact of defects on mechanical properties. This paper presents a novel approach based on high-resolution micro-computed tomography (micro-CT) scans from specimens manufactured with AFP, which automatically creates a mesoscale numerical model incorporating as-fabricated defect morphologies. The hexahedral mesh, generated from the segmented plies of the micro-CT volume, accounts for ply thickness and out-of-plane fiber orientation. This approach is verified with mechanical testing and digital image correlation (DIC) under tensile loading. The simulation results align closely with experimental testing and accurately illustrate the influence of fiber waviness in various defect configurations, such as gaps and overlaps. The study shows that lay-up defects can lead to knockdown factors of up to 12% in tensile properties, with each defect creating a distinct pattern in the local strain. This model can serve as a benchmark for further numerical simulations and surrogate models of defect configurations under varying loading conditions.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"351 \",\"pages\":\"Article 118601\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007293\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007293","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
X-ray micro-computed tomography for mechanical behaviour analysis of Automated Fiber Placement (AFP) laminates with integrated gaps and overlaps
Automated Fiber Placement (AFP) is a manufacturing technique widely used for the serial production of aerospace parts. A deep understanding of the effect of lay-up defects is crucial for part and lay-up design. Currently, numerical models for structural simulation lack a precise representation of the internal structure of AFP laminates, which is crucial for understanding the impact of defects on mechanical properties. This paper presents a novel approach based on high-resolution micro-computed tomography (micro-CT) scans from specimens manufactured with AFP, which automatically creates a mesoscale numerical model incorporating as-fabricated defect morphologies. The hexahedral mesh, generated from the segmented plies of the micro-CT volume, accounts for ply thickness and out-of-plane fiber orientation. This approach is verified with mechanical testing and digital image correlation (DIC) under tensile loading. The simulation results align closely with experimental testing and accurately illustrate the influence of fiber waviness in various defect configurations, such as gaps and overlaps. The study shows that lay-up defects can lead to knockdown factors of up to 12% in tensile properties, with each defect creating a distinct pattern in the local strain. This model can serve as a benchmark for further numerical simulations and surrogate models of defect configurations under varying loading conditions.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.