Weisheng Zhang , Xiaoye Yan , Yao Meng , Yuqiao Ye , Chang Liu
{"title":"用于能量收集的多材料柔电复合结构的显式拓扑优化","authors":"Weisheng Zhang , Xiaoye Yan , Yao Meng , Yuqiao Ye , Chang Liu","doi":"10.1016/j.compstruct.2024.118621","DOIUrl":null,"url":null,"abstract":"<div><div>The development of Micro-Electro-Mechanical Systems (MEMS) and portable electronic devices have facilitated the application of energy harvesters in self-powered microelectromechanical devices. This work presents an explicit topology optimization framework for the design of multi-material flexoelectric composite structures. It aims to achieve flexoelectric energy harvesting structures with enhanced energy conversion efficiency by optimizing the distribution of elastic and flexoelectric materials concurrently. The proposed method utilizes a set of groups of moving morphable components (MMC) to characterize the distribution of flexoelectric and elastic materials. The influence of different material overlapping schemes is also investigated in this work. The combination of isogeometric analysis (IGA) and MMC enables an efficient solution of flexoelectric high-order partial differential equations (PDEs). Numerical examples and experiments verify the effectiveness of the proposed method. Compared to other methods, the component-based MMC method not only facilitates the formation of efficient structures, but also directly produces the geometric model required for manufacturing.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118621"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit topology optimization of multi-material flexoelectric composite structures for energy harvesting\",\"authors\":\"Weisheng Zhang , Xiaoye Yan , Yao Meng , Yuqiao Ye , Chang Liu\",\"doi\":\"10.1016/j.compstruct.2024.118621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of Micro-Electro-Mechanical Systems (MEMS) and portable electronic devices have facilitated the application of energy harvesters in self-powered microelectromechanical devices. This work presents an explicit topology optimization framework for the design of multi-material flexoelectric composite structures. It aims to achieve flexoelectric energy harvesting structures with enhanced energy conversion efficiency by optimizing the distribution of elastic and flexoelectric materials concurrently. The proposed method utilizes a set of groups of moving morphable components (MMC) to characterize the distribution of flexoelectric and elastic materials. The influence of different material overlapping schemes is also investigated in this work. The combination of isogeometric analysis (IGA) and MMC enables an efficient solution of flexoelectric high-order partial differential equations (PDEs). Numerical examples and experiments verify the effectiveness of the proposed method. Compared to other methods, the component-based MMC method not only facilitates the formation of efficient structures, but also directly produces the geometric model required for manufacturing.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"351 \",\"pages\":\"Article 118621\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007499\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007499","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Explicit topology optimization of multi-material flexoelectric composite structures for energy harvesting
The development of Micro-Electro-Mechanical Systems (MEMS) and portable electronic devices have facilitated the application of energy harvesters in self-powered microelectromechanical devices. This work presents an explicit topology optimization framework for the design of multi-material flexoelectric composite structures. It aims to achieve flexoelectric energy harvesting structures with enhanced energy conversion efficiency by optimizing the distribution of elastic and flexoelectric materials concurrently. The proposed method utilizes a set of groups of moving morphable components (MMC) to characterize the distribution of flexoelectric and elastic materials. The influence of different material overlapping schemes is also investigated in this work. The combination of isogeometric analysis (IGA) and MMC enables an efficient solution of flexoelectric high-order partial differential equations (PDEs). Numerical examples and experiments verify the effectiveness of the proposed method. Compared to other methods, the component-based MMC method not only facilitates the formation of efficient structures, but also directly produces the geometric model required for manufacturing.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.