室内环境中的甲醇和乙醇

William W Nazaroff , Charles J. Weschler
{"title":"室内环境中的甲醇和乙醇","authors":"William W Nazaroff ,&nbsp;Charles J. Weschler","doi":"10.1016/j.indenv.2024.100049","DOIUrl":null,"url":null,"abstract":"<div><div>Although rarely the subject of focused research, methanol (CH<sub>3</sub>OH) and ethanol (C<sub>2</sub>H<sub>5</sub>OH) are among the most abundant organic compounds in indoor air. We review the state of knowledge about these alcohols as constituents of indoor air, first summarizing their physical, chemical, biological, and toxicological characteristics. Central tendencies of concentrations measured in ordinary indoor environments are 35 ppb for methanol (median; mean = 34 ppb) and 44 ppb for ethanol (median; mean = 163 ppb), much higher than in outdoor air. Concentration variability can be large both among indoor environments and over time within a given environment. Indoor ethanol concentrations above 1 ppm have been reported. Emissions from occupants contribute substantially to indoor concentrations. Other important indoor sources of methanol include wooden building materials and furnishings. Methanol emissions indoors exhibit substantial increases with increasing temperature. Indoor ethanol concentrations are strongly influenced by episodic emission events, including cooking, cleaning activities, and alcoholic beverage consumption. Homogeneous oxidation pathways appear slow as a removal mechanism relative to ventilation. Evidence regarding the importance of sorption to indoor surfaces is not fully resolved, with known sorptive reservoirs indicating little importance of this process, but a variable-ventilation experiment suggesting substantial reversible sorption for ethanol. Photocatalytic oxidation devices, intended to control indoor levels of volatile organic compounds, have a demonstrated tendency to convert ethanol to acetaldehyde, a more toxic indoor air contaminant. Ethanol transported outdoors from indoor sources may contribute to urban and regional photochemical smog.</div></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"1 4","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methanol and ethanol in indoor environments\",\"authors\":\"William W Nazaroff ,&nbsp;Charles J. Weschler\",\"doi\":\"10.1016/j.indenv.2024.100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although rarely the subject of focused research, methanol (CH<sub>3</sub>OH) and ethanol (C<sub>2</sub>H<sub>5</sub>OH) are among the most abundant organic compounds in indoor air. We review the state of knowledge about these alcohols as constituents of indoor air, first summarizing their physical, chemical, biological, and toxicological characteristics. Central tendencies of concentrations measured in ordinary indoor environments are 35 ppb for methanol (median; mean = 34 ppb) and 44 ppb for ethanol (median; mean = 163 ppb), much higher than in outdoor air. Concentration variability can be large both among indoor environments and over time within a given environment. Indoor ethanol concentrations above 1 ppm have been reported. Emissions from occupants contribute substantially to indoor concentrations. Other important indoor sources of methanol include wooden building materials and furnishings. Methanol emissions indoors exhibit substantial increases with increasing temperature. Indoor ethanol concentrations are strongly influenced by episodic emission events, including cooking, cleaning activities, and alcoholic beverage consumption. Homogeneous oxidation pathways appear slow as a removal mechanism relative to ventilation. Evidence regarding the importance of sorption to indoor surfaces is not fully resolved, with known sorptive reservoirs indicating little importance of this process, but a variable-ventilation experiment suggesting substantial reversible sorption for ethanol. Photocatalytic oxidation devices, intended to control indoor levels of volatile organic compounds, have a demonstrated tendency to convert ethanol to acetaldehyde, a more toxic indoor air contaminant. Ethanol transported outdoors from indoor sources may contribute to urban and regional photochemical smog.</div></div>\",\"PeriodicalId\":100665,\"journal\":{\"name\":\"Indoor Environments\",\"volume\":\"1 4\",\"pages\":\"Article 100049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950362024000468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362024000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲醇(CH3OH)和乙醇(C2H5OH)是室内空气中含量最高的有机化合物,尽管它们很少成为重点研究的对象。我们回顾了有关这两种醇类作为室内空气成分的知识现状,首先总结了它们的物理、化学、生物和毒理学特征。在普通室内环境中测得的浓度中心趋势为:甲醇 35 ppb(中位数;平均值 = 34 ppb),乙醇 44 ppb(中位数;平均值 = 163 ppb),远高于室外空气中的浓度。室内环境之间以及特定环境内不同时间段的浓度变化都很大。据报道,室内乙醇浓度超过 1 ppm。居住者排放的气体在很大程度上增加了室内浓度。甲醇的其他重要室内来源包括木质建筑材料和家具。室内的甲醇排放量会随着温度的升高而大幅增加。室内乙醇浓度受偶发性排放事件的影响很大,包括烹饪、清洁活动和酒精饮料消费。相对于通风而言,均相氧化途径似乎是一种缓慢的清除机制。关于室内表面吸附的重要性的证据尚未完全确定,已知的吸附库表明这一过程的重要性不大,但可变通风实验表明乙醇的吸附作用是可逆的。用于控制室内挥发性有机化合物含量的光催化氧化装置已证明有将乙醇转化为乙醛的趋势,乙醛是一种毒性更强的室内空气污染物。从室内排放到室外的乙醇可能会造成城市和地区光化学烟雾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methanol and ethanol in indoor environments
Although rarely the subject of focused research, methanol (CH3OH) and ethanol (C2H5OH) are among the most abundant organic compounds in indoor air. We review the state of knowledge about these alcohols as constituents of indoor air, first summarizing their physical, chemical, biological, and toxicological characteristics. Central tendencies of concentrations measured in ordinary indoor environments are 35 ppb for methanol (median; mean = 34 ppb) and 44 ppb for ethanol (median; mean = 163 ppb), much higher than in outdoor air. Concentration variability can be large both among indoor environments and over time within a given environment. Indoor ethanol concentrations above 1 ppm have been reported. Emissions from occupants contribute substantially to indoor concentrations. Other important indoor sources of methanol include wooden building materials and furnishings. Methanol emissions indoors exhibit substantial increases with increasing temperature. Indoor ethanol concentrations are strongly influenced by episodic emission events, including cooking, cleaning activities, and alcoholic beverage consumption. Homogeneous oxidation pathways appear slow as a removal mechanism relative to ventilation. Evidence regarding the importance of sorption to indoor surfaces is not fully resolved, with known sorptive reservoirs indicating little importance of this process, but a variable-ventilation experiment suggesting substantial reversible sorption for ethanol. Photocatalytic oxidation devices, intended to control indoor levels of volatile organic compounds, have a demonstrated tendency to convert ethanol to acetaldehyde, a more toxic indoor air contaminant. Ethanol transported outdoors from indoor sources may contribute to urban and regional photochemical smog.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to “Ventilation characteristics in a hospital where a COVID-19 outbreak occurred in the winter of 2020” [Indoor Environ. 2 (2025) 100065] Implementing Bayesian inference on a stochastic CO2-based grey-box model CO2 levels and SARS-CoV-2 transmission in public schools: A retrospective cohort study in Montreal (Canada) Cognition, economic decision-making, and physiological response to carbon dioxide Personal air cleaning by a user-tracking robot equipped with a nanofiber air cleaner in a large work space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1