Sanjib Debnath , Swapan Debbarma , Sukanta Nama , Apu Kumar Saha , Runu Dhar , Ali Riza Yildiz , Amir H. Gandomi
{"title":"用于全局优化和工程问题的基于中心对立的回溯搜索算法","authors":"Sanjib Debnath , Swapan Debbarma , Sukanta Nama , Apu Kumar Saha , Runu Dhar , Ali Riza Yildiz , Amir H. Gandomi","doi":"10.1016/j.advengsoft.2024.103784","DOIUrl":null,"url":null,"abstract":"<div><div>Evolutionary algorithms (EAs) have a lot of potential to handle nonlinear and non-convex objective functions. Particularly, the backtracking search algorithm (BSA) is a popular nature-based evolutionary optimization method that has attracted many researchers due to its simple structure and efficiency in problem-solving across diverse fields. However, like other optimization algorithms, BSA is also prone to reduced diversity, local optima, and inadequate intensification capabilities. To overcome the flaws and increase the performance of BSA, this research proposes a centroid opposition-based backtracking search algorithm (CoBSA) for global optimization and engineering design problems. In CoBSA, specific individuals simultaneously acquire current and historical population knowledge to preserve population variety and improve exploration capability. On the other hand, other individuals execute the position from the current population's centroid opposition to progress convergence speed and exploitation potential. In addition, an elite process based on logistic chaotic local search was developed to improve the superiority of the current individuals. The suggested CoBSA was validated on a set of benchmark functions and then employed in a set of application examples. According to extensive numerical results and assessments, CoBSA outperformed the other state-of-the-art methods in terms of accurateness, reliability, and execution capability.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"198 ","pages":"Article 103784"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centroid opposition-based backtracking search algorithm for global optimization and engineering problems\",\"authors\":\"Sanjib Debnath , Swapan Debbarma , Sukanta Nama , Apu Kumar Saha , Runu Dhar , Ali Riza Yildiz , Amir H. Gandomi\",\"doi\":\"10.1016/j.advengsoft.2024.103784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evolutionary algorithms (EAs) have a lot of potential to handle nonlinear and non-convex objective functions. Particularly, the backtracking search algorithm (BSA) is a popular nature-based evolutionary optimization method that has attracted many researchers due to its simple structure and efficiency in problem-solving across diverse fields. However, like other optimization algorithms, BSA is also prone to reduced diversity, local optima, and inadequate intensification capabilities. To overcome the flaws and increase the performance of BSA, this research proposes a centroid opposition-based backtracking search algorithm (CoBSA) for global optimization and engineering design problems. In CoBSA, specific individuals simultaneously acquire current and historical population knowledge to preserve population variety and improve exploration capability. On the other hand, other individuals execute the position from the current population's centroid opposition to progress convergence speed and exploitation potential. In addition, an elite process based on logistic chaotic local search was developed to improve the superiority of the current individuals. The suggested CoBSA was validated on a set of benchmark functions and then employed in a set of application examples. According to extensive numerical results and assessments, CoBSA outperformed the other state-of-the-art methods in terms of accurateness, reliability, and execution capability.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"198 \",\"pages\":\"Article 103784\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824001911\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824001911","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Centroid opposition-based backtracking search algorithm for global optimization and engineering problems
Evolutionary algorithms (EAs) have a lot of potential to handle nonlinear and non-convex objective functions. Particularly, the backtracking search algorithm (BSA) is a popular nature-based evolutionary optimization method that has attracted many researchers due to its simple structure and efficiency in problem-solving across diverse fields. However, like other optimization algorithms, BSA is also prone to reduced diversity, local optima, and inadequate intensification capabilities. To overcome the flaws and increase the performance of BSA, this research proposes a centroid opposition-based backtracking search algorithm (CoBSA) for global optimization and engineering design problems. In CoBSA, specific individuals simultaneously acquire current and historical population knowledge to preserve population variety and improve exploration capability. On the other hand, other individuals execute the position from the current population's centroid opposition to progress convergence speed and exploitation potential. In addition, an elite process based on logistic chaotic local search was developed to improve the superiority of the current individuals. The suggested CoBSA was validated on a set of benchmark functions and then employed in a set of application examples. According to extensive numerical results and assessments, CoBSA outperformed the other state-of-the-art methods in terms of accurateness, reliability, and execution capability.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.