改善核桃蛋白质结构和功能特性的改性方法:综述

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry: X Pub Date : 2024-10-03 DOI:10.1016/j.fochx.2024.101873
Min Yang, Yunkun Zhu, Jiangxia Xu, Zhongkai Zhao, Liang Wang, Jie Yang, Minwei Zhang
{"title":"改善核桃蛋白质结构和功能特性的改性方法:综述","authors":"Min Yang,&nbsp;Yunkun Zhu,&nbsp;Jiangxia Xu,&nbsp;Zhongkai Zhao,&nbsp;Liang Wang,&nbsp;Jie Yang,&nbsp;Minwei Zhang","doi":"10.1016/j.fochx.2024.101873","DOIUrl":null,"url":null,"abstract":"<div><div>Walnut protein has a high gluten content and compact structure, which limits its water solubility and affects its applications. Therefore, improving the sustainability of walnut proteins is an urgent issue that must be addressed. Physical modification can directly alter the structure of walnut proteins, leading to enhanced functional properties. Chemical modifications typically involve the introduction of exogenous substances that react with walnut proteins to obtain novel products with improved processing attributes. As a highly specific modification technique, biomodification uses enzymes or microorganisms to break down walnut proteins into small peptide molecules or cross-link them to form soluble polymers, thereby enhancing their functional properties and bioactivity. This review presents various methods for modifying walnut proteins and their effects on the structure and functional properties of walnut proteins. The challenges associated with the application and development of these unique technologies are also discussed.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101873"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification approaches of walnut proteins to improve their structural and functional properties: A review\",\"authors\":\"Min Yang,&nbsp;Yunkun Zhu,&nbsp;Jiangxia Xu,&nbsp;Zhongkai Zhao,&nbsp;Liang Wang,&nbsp;Jie Yang,&nbsp;Minwei Zhang\",\"doi\":\"10.1016/j.fochx.2024.101873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Walnut protein has a high gluten content and compact structure, which limits its water solubility and affects its applications. Therefore, improving the sustainability of walnut proteins is an urgent issue that must be addressed. Physical modification can directly alter the structure of walnut proteins, leading to enhanced functional properties. Chemical modifications typically involve the introduction of exogenous substances that react with walnut proteins to obtain novel products with improved processing attributes. As a highly specific modification technique, biomodification uses enzymes or microorganisms to break down walnut proteins into small peptide molecules or cross-link them to form soluble polymers, thereby enhancing their functional properties and bioactivity. This review presents various methods for modifying walnut proteins and their effects on the structure and functional properties of walnut proteins. The challenges associated with the application and development of these unique technologies are also discussed.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101873\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007612\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007612","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

核桃蛋白具有较高的谷蛋白含量和紧密的结构,这限制了其水溶性,影响了其应用。因此,提高核桃蛋白的可持续性是一个亟待解决的问题。物理改性可直接改变核桃蛋白质的结构,从而增强其功能特性。化学修饰通常涉及引入与核桃蛋白质发生反应的外源物质,以获得具有更好加工属性的新型产品。作为一种高度特异性的改性技术,生物改性使用酶或微生物将核桃蛋白分解成小肽分子,或将其交联形成可溶性聚合物,从而增强其功能特性和生物活性。本综述介绍了改性核桃蛋白的各种方法及其对核桃蛋白结构和功能特性的影响。还讨论了与这些独特技术的应用和开发相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification approaches of walnut proteins to improve their structural and functional properties: A review
Walnut protein has a high gluten content and compact structure, which limits its water solubility and affects its applications. Therefore, improving the sustainability of walnut proteins is an urgent issue that must be addressed. Physical modification can directly alter the structure of walnut proteins, leading to enhanced functional properties. Chemical modifications typically involve the introduction of exogenous substances that react with walnut proteins to obtain novel products with improved processing attributes. As a highly specific modification technique, biomodification uses enzymes or microorganisms to break down walnut proteins into small peptide molecules or cross-link them to form soluble polymers, thereby enhancing their functional properties and bioactivity. This review presents various methods for modifying walnut proteins and their effects on the structure and functional properties of walnut proteins. The challenges associated with the application and development of these unique technologies are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
期刊最新文献
Nanotechnology in aquaculture: Transforming the future of food security Effect of ultrasonic pretreatment with synergistic microbial fermentation on tenderness and flavor of air-dried duck under low nitrite process. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health Feasibility analysis on the application of the Maillard reaction in developing Lentinula edodes umami seasoning: Based on the umami substances, sensory quality, physicochemical properties of the products. Comparative characterization of flavor precursors and volatiles in Chongming white goat of different ages by UPLC-MS/MS and GC-MS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1