{"title":"街头金属雕塑设计过程中基于热环境数值分析的金属疲劳裂纹模拟分析","authors":"","doi":"10.1016/j.tsep.2024.102965","DOIUrl":null,"url":null,"abstract":"<div><div>With the popularity of urban public art, metal materials are easily affected by environmental factors in practical applications, especially the influence of thermal environment on metal fatigue, which often leads to cracks in sculptures, affecting their service life and safety. Through the numerical analysis of thermal environment, the fatigue crack generation mechanism of street metal sculpture in the process of use is deeply discussed in order to provide theoretical support and practical guidance for sculpture design. The finite element analysis method is used to simulate the stress distribution of metal sculpture under different thermal conditions. By setting a variety of conditions such as ambient temperature and humidity, the corresponding thermodynamic model is established, and the fatigue properties of metal materials are evaluated comprehensively. The numerical model is calibrated with experimental data to improve the accuracy of the simulation. It is found that the change of thermal environment significantly affects the internal stress distribution of metal sculpture, and then affects the generation of fatigue cracks. At high temperature, the fatigue limit of the material is reduced, which leads to more cracks. Under the condition of sudden temperature change, the stress concentration of the material is more obvious, and the fatigue life of the metal is significantly shortened.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of metal fatigue crack analysis based on thermal environment numerical analysis in street metal sculpture design process\",\"authors\":\"\",\"doi\":\"10.1016/j.tsep.2024.102965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the popularity of urban public art, metal materials are easily affected by environmental factors in practical applications, especially the influence of thermal environment on metal fatigue, which often leads to cracks in sculptures, affecting their service life and safety. Through the numerical analysis of thermal environment, the fatigue crack generation mechanism of street metal sculpture in the process of use is deeply discussed in order to provide theoretical support and practical guidance for sculpture design. The finite element analysis method is used to simulate the stress distribution of metal sculpture under different thermal conditions. By setting a variety of conditions such as ambient temperature and humidity, the corresponding thermodynamic model is established, and the fatigue properties of metal materials are evaluated comprehensively. The numerical model is calibrated with experimental data to improve the accuracy of the simulation. It is found that the change of thermal environment significantly affects the internal stress distribution of metal sculpture, and then affects the generation of fatigue cracks. At high temperature, the fatigue limit of the material is reduced, which leads to more cracks. Under the condition of sudden temperature change, the stress concentration of the material is more obvious, and the fatigue life of the metal is significantly shortened.</div></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924005833\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924005833","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Simulation of metal fatigue crack analysis based on thermal environment numerical analysis in street metal sculpture design process
With the popularity of urban public art, metal materials are easily affected by environmental factors in practical applications, especially the influence of thermal environment on metal fatigue, which often leads to cracks in sculptures, affecting their service life and safety. Through the numerical analysis of thermal environment, the fatigue crack generation mechanism of street metal sculpture in the process of use is deeply discussed in order to provide theoretical support and practical guidance for sculpture design. The finite element analysis method is used to simulate the stress distribution of metal sculpture under different thermal conditions. By setting a variety of conditions such as ambient temperature and humidity, the corresponding thermodynamic model is established, and the fatigue properties of metal materials are evaluated comprehensively. The numerical model is calibrated with experimental data to improve the accuracy of the simulation. It is found that the change of thermal environment significantly affects the internal stress distribution of metal sculpture, and then affects the generation of fatigue cracks. At high temperature, the fatigue limit of the material is reduced, which leads to more cracks. Under the condition of sudden temperature change, the stress concentration of the material is more obvious, and the fatigue life of the metal is significantly shortened.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.