{"title":"开发和测试用于描述三维数字岩心模型中流体流动的混合(PNM-CFD)数学模型和数值算法","authors":"S.A. Filimonov , A.A. Gavrilov , K.A. Lukyanenko , A.I. Pryazhnikov , A.V. Minakov","doi":"10.1016/j.cherd.2024.09.039","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical simulation of fluid flow in porous and fractured rocks is an important task for many industrial applications. The most common approaches to constructing such models are direct (CFD or lattice Boltzmann) and porous network (PNM) modeling. Each approach has its own advantages and disadvantages. This paper presents a hybrid mathematical PNM–CFD model for describing fluid flows in three-dimensional digital core models, which has the high speed performance of PNM approaches and high accuracy of CFD models. Numerical technique has been developed for describing fluid flows in three-dimensional digital core models using a hybrid PNM–CFD model. The numerical technique links a one-dimensional pore network solver and a three-dimensional CFD solver into a combined model in original way by constructing a single pressure field for the entire computation domain. To validate the model, several tests were performed, including flow in straight channels and numerical simulation of fluid flow in a microfluidic chip. The test results have shown the adequacy of the hybrid model performance. The hybrid model for determining pressure drop in a branched network with three-dimensional chambers has an error of no more than 5 % when compared to experimental data. Similarly, the error in calculating velocity does not exceed 7 % when compared to the full three-dimensional calculation. The hybrid model has shown an almost twofold increase in calculation speed compared to the full three-dimensional model.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 53-65"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and testing of hybrid (PNM–CFD) mathematical model and numerical algorithm for description of fluid flows in three-dimensional digital core models\",\"authors\":\"S.A. Filimonov , A.A. Gavrilov , K.A. Lukyanenko , A.I. Pryazhnikov , A.V. Minakov\",\"doi\":\"10.1016/j.cherd.2024.09.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerical simulation of fluid flow in porous and fractured rocks is an important task for many industrial applications. The most common approaches to constructing such models are direct (CFD or lattice Boltzmann) and porous network (PNM) modeling. Each approach has its own advantages and disadvantages. This paper presents a hybrid mathematical PNM–CFD model for describing fluid flows in three-dimensional digital core models, which has the high speed performance of PNM approaches and high accuracy of CFD models. Numerical technique has been developed for describing fluid flows in three-dimensional digital core models using a hybrid PNM–CFD model. The numerical technique links a one-dimensional pore network solver and a three-dimensional CFD solver into a combined model in original way by constructing a single pressure field for the entire computation domain. To validate the model, several tests were performed, including flow in straight channels and numerical simulation of fluid flow in a microfluidic chip. The test results have shown the adequacy of the hybrid model performance. The hybrid model for determining pressure drop in a branched network with three-dimensional chambers has an error of no more than 5 % when compared to experimental data. Similarly, the error in calculating velocity does not exceed 7 % when compared to the full three-dimensional calculation. The hybrid model has shown an almost twofold increase in calculation speed compared to the full three-dimensional model.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"Pages 53-65\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005719\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005719","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Development and testing of hybrid (PNM–CFD) mathematical model and numerical algorithm for description of fluid flows in three-dimensional digital core models
Numerical simulation of fluid flow in porous and fractured rocks is an important task for many industrial applications. The most common approaches to constructing such models are direct (CFD or lattice Boltzmann) and porous network (PNM) modeling. Each approach has its own advantages and disadvantages. This paper presents a hybrid mathematical PNM–CFD model for describing fluid flows in three-dimensional digital core models, which has the high speed performance of PNM approaches and high accuracy of CFD models. Numerical technique has been developed for describing fluid flows in three-dimensional digital core models using a hybrid PNM–CFD model. The numerical technique links a one-dimensional pore network solver and a three-dimensional CFD solver into a combined model in original way by constructing a single pressure field for the entire computation domain. To validate the model, several tests were performed, including flow in straight channels and numerical simulation of fluid flow in a microfluidic chip. The test results have shown the adequacy of the hybrid model performance. The hybrid model for determining pressure drop in a branched network with three-dimensional chambers has an error of no more than 5 % when compared to experimental data. Similarly, the error in calculating velocity does not exceed 7 % when compared to the full three-dimensional calculation. The hybrid model has shown an almost twofold increase in calculation speed compared to the full three-dimensional model.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.