Thiago Paulino Schuitek, Daniel da Silva Costa, Ney Pereira Mattoso Filho, Guinther Kellermann
{"title":"单晶硅片表面的晶体学取向对 NiSi2 纳米板内轴生长的影响","authors":"Thiago Paulino Schuitek, Daniel da Silva Costa, Ney Pereira Mattoso Filho, Guinther Kellermann","doi":"10.1107/S1600576724007210","DOIUrl":null,"url":null,"abstract":"<p>A multi-technique analysis was used to investigate how the orientation of single-crystal Si wafer surfaces affects the size, shape and orientation of NiSi<sub>2</sub> nanocrystals grown within the wafers through the thermal diffusion of Ni atoms from a nickel-doped thin film deposited on the surface. Nickel-doped thin films were prepared on silicon wafers with three distinct crystallographic orientations, [001], [110] and [111]. Three sets of samples were then annealed at 500, 600 and 700°C for 2 h. Regardless of crystallographic orientation or annealing temperature, NiSi<sub>2</sub> nanoplates with a nearly hexagonal shape grew close to the external surface of the wafers, aligning their larger surfaces parallel to one of the planes of the Si{111} crystallographic form. The crystallographic orientation and annealing temperature in the 500–700°C range did not significantly affect the final values of the average diameter and thickness of the nanoplates. However, significant differences were noted in the number of nanoplates formed in Si wafers with different crystallographic orientations. The results indicate that these observed differences are correlated with the number of pre-existing defects in the wafers that influence the heterogeneous nucleation process. In addition, the average size and size dispersion were determined for pores at the surface of the Si wafers formed due to the etching process used for native oxide removal.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the crystallographic orientation of the surface of single-crystal Si wafers on the endotaxial growth of NiSi2 nanoplates\",\"authors\":\"Thiago Paulino Schuitek, Daniel da Silva Costa, Ney Pereira Mattoso Filho, Guinther Kellermann\",\"doi\":\"10.1107/S1600576724007210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multi-technique analysis was used to investigate how the orientation of single-crystal Si wafer surfaces affects the size, shape and orientation of NiSi<sub>2</sub> nanocrystals grown within the wafers through the thermal diffusion of Ni atoms from a nickel-doped thin film deposited on the surface. Nickel-doped thin films were prepared on silicon wafers with three distinct crystallographic orientations, [001], [110] and [111]. Three sets of samples were then annealed at 500, 600 and 700°C for 2 h. Regardless of crystallographic orientation or annealing temperature, NiSi<sub>2</sub> nanoplates with a nearly hexagonal shape grew close to the external surface of the wafers, aligning their larger surfaces parallel to one of the planes of the Si{111} crystallographic form. The crystallographic orientation and annealing temperature in the 500–700°C range did not significantly affect the final values of the average diameter and thickness of the nanoplates. However, significant differences were noted in the number of nanoplates formed in Si wafers with different crystallographic orientations. The results indicate that these observed differences are correlated with the number of pre-existing defects in the wafers that influence the heterogeneous nucleation process. In addition, the average size and size dispersion were determined for pores at the surface of the Si wafers formed due to the etching process used for native oxide removal.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724007210\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724007210","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of the crystallographic orientation of the surface of single-crystal Si wafers on the endotaxial growth of NiSi2 nanoplates
A multi-technique analysis was used to investigate how the orientation of single-crystal Si wafer surfaces affects the size, shape and orientation of NiSi2 nanocrystals grown within the wafers through the thermal diffusion of Ni atoms from a nickel-doped thin film deposited on the surface. Nickel-doped thin films were prepared on silicon wafers with three distinct crystallographic orientations, [001], [110] and [111]. Three sets of samples were then annealed at 500, 600 and 700°C for 2 h. Regardless of crystallographic orientation or annealing temperature, NiSi2 nanoplates with a nearly hexagonal shape grew close to the external surface of the wafers, aligning their larger surfaces parallel to one of the planes of the Si{111} crystallographic form. The crystallographic orientation and annealing temperature in the 500–700°C range did not significantly affect the final values of the average diameter and thickness of the nanoplates. However, significant differences were noted in the number of nanoplates formed in Si wafers with different crystallographic orientations. The results indicate that these observed differences are correlated with the number of pre-existing defects in the wafers that influence the heterogeneous nucleation process. In addition, the average size and size dispersion were determined for pores at the surface of the Si wafers formed due to the etching process used for native oxide removal.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.