预测和优先考虑社区大会:通过实验学习成果

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-10-12 DOI:10.1111/ele.14535
Benjamin W. Blonder, Michael H. Lim, Oscar Godoy
{"title":"预测和优先考虑社区大会:通过实验学习成果","authors":"Benjamin W. Blonder,&nbsp;Michael H. Lim,&nbsp;Oscar Godoy","doi":"10.1111/ele.14535","DOIUrl":null,"url":null,"abstract":"<p>Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion, restoration and synthetic ecology. However, predicting and prioritising assembly outcomes remains difficult. We address this challenge via a mechanism-free approach useful when little data or knowledge exist (<i>LOVE</i>; Learning Outcomes Via Experiments). We carry out assembly experiments (‘actions’, here, random combinations of species additions) potentially in multiple environments, wait, and measure abundance outcomes. We then train a model to predict outcomes of novel actions or prioritise actions that would yield the most desirable outcomes. Across 10 single- and multi-environment datasets, when trained on 89 randomly selected actions, <i>LOVE</i> predicts outcomes with 0.5%–3.4% mean error, and prioritises actions for maximising richness, maximising abundance, or removing unwanted species, with 94%–99% mean true positive rate and 10%–84% mean true negative rate across tasks. <i>LOVE</i> complements existing mechanism-first approaches for community ecology and may help address numerous applied challenges.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 10","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14535","citationCount":"0","resultStr":"{\"title\":\"Predicting and Prioritising Community Assembly: Learning Outcomes via Experiments\",\"authors\":\"Benjamin W. Blonder,&nbsp;Michael H. Lim,&nbsp;Oscar Godoy\",\"doi\":\"10.1111/ele.14535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion, restoration and synthetic ecology. However, predicting and prioritising assembly outcomes remains difficult. We address this challenge via a mechanism-free approach useful when little data or knowledge exist (<i>LOVE</i>; Learning Outcomes Via Experiments). We carry out assembly experiments (‘actions’, here, random combinations of species additions) potentially in multiple environments, wait, and measure abundance outcomes. We then train a model to predict outcomes of novel actions or prioritise actions that would yield the most desirable outcomes. Across 10 single- and multi-environment datasets, when trained on 89 randomly selected actions, <i>LOVE</i> predicts outcomes with 0.5%–3.4% mean error, and prioritises actions for maximising richness, maximising abundance, or removing unwanted species, with 94%–99% mean true positive rate and 10%–84% mean true negative rate across tasks. <i>LOVE</i> complements existing mechanism-first approaches for community ecology and may help address numerous applied challenges.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 10\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14535\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14535\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14535","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

群落组装为生物多样性保护、气候变化、入侵、恢复和合成生态学方面的应用奠定了基础。然而,预测和优先考虑组装结果仍然很困难。我们通过一种无机制方法(LOVE;通过实验学习结果)来应对这一挑战,这种方法在数据或知识匮乏的情况下非常有用。我们可能在多种环境中进行组装实验("行动",这里指物种添加的随机组合),等待并测量丰度结果。然后,我们训练一个模型来预测新行动的结果,或优先考虑能产生最理想结果的行动。在 10 个单一环境和多环境数据集上,当对 89 个随机选择的行动进行训练时,LOVE 预测结果的平均误差为 0.5%-3.4%,并优先考虑最大化丰富度、最大化丰度或移除不需要的物种的行动,在所有任务中的平均真实阳性率为 94%-99%,平均真实阴性率为 10%-84%。LOVE 是对现有群落生态学机制优先方法的补充,可能有助于解决众多应用难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting and Prioritising Community Assembly: Learning Outcomes via Experiments

Community assembly provides the foundation for applications in biodiversity conservation, climate change, invasion, restoration and synthetic ecology. However, predicting and prioritising assembly outcomes remains difficult. We address this challenge via a mechanism-free approach useful when little data or knowledge exist (LOVE; Learning Outcomes Via Experiments). We carry out assembly experiments (‘actions’, here, random combinations of species additions) potentially in multiple environments, wait, and measure abundance outcomes. We then train a model to predict outcomes of novel actions or prioritise actions that would yield the most desirable outcomes. Across 10 single- and multi-environment datasets, when trained on 89 randomly selected actions, LOVE predicts outcomes with 0.5%–3.4% mean error, and prioritises actions for maximising richness, maximising abundance, or removing unwanted species, with 94%–99% mean true positive rate and 10%–84% mean true negative rate across tasks. LOVE complements existing mechanism-first approaches for community ecology and may help address numerous applied challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
The Impact of Microbial Interactions on Ecosystem Function Intensifies Under Stress Mycorrhizal Types Regulate Tree Spatial Associations in Temperate Forests: Ectomycorrhizal Trees Might Favour Species Coexistence Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition Seasonality Structures Avian Functional Diversity and Niche Packing Across North America
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1