{"title":"微调蛋白质饥饿感:取决于性别和交配的设定点控制","authors":"Yangkyun Oh, Won-Jae Lee","doi":"10.1038/s41422-024-01039-7","DOIUrl":null,"url":null,"abstract":"<p><b>While a balanced intake of macronutrients — carbohydrates, fats, and proteins — is essential for metabolic homeostasis, animals need higher protein intake during critical life stages like pregnancy. A recent paper in</b> <b><i>Cell</i></b> <b>by Wu et al. introduces the novel concept of adjusting protein intake setpoints based on sex and mating status, using two opposing G protein-coupled receptor (GPCR) signaling pathways that regulate protein appetite-controlling neurons in the fruit fly,</b> <b><i>Drosophila melanogaster</i></b>.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"193 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning protein hunger: sex- and mating-dependent setpoint control\",\"authors\":\"Yangkyun Oh, Won-Jae Lee\",\"doi\":\"10.1038/s41422-024-01039-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>While a balanced intake of macronutrients — carbohydrates, fats, and proteins — is essential for metabolic homeostasis, animals need higher protein intake during critical life stages like pregnancy. A recent paper in</b> <b><i>Cell</i></b> <b>by Wu et al. introduces the novel concept of adjusting protein intake setpoints based on sex and mating status, using two opposing G protein-coupled receptor (GPCR) signaling pathways that regulate protein appetite-controlling neurons in the fruit fly,</b> <b><i>Drosophila melanogaster</i></b>.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41422-024-01039-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41422-024-01039-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fine-tuning protein hunger: sex- and mating-dependent setpoint control
While a balanced intake of macronutrients — carbohydrates, fats, and proteins — is essential for metabolic homeostasis, animals need higher protein intake during critical life stages like pregnancy. A recent paper inCellby Wu et al. introduces the novel concept of adjusting protein intake setpoints based on sex and mating status, using two opposing G protein-coupled receptor (GPCR) signaling pathways that regulate protein appetite-controlling neurons in the fruit fly,Drosophila melanogaster.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.