Basem Al Alwan , Muhammad Aadil , Awais Khalid , Amira Alazmi , Atef El Jery , Mazen R. Alrahili , Mousa M. Hossin , Muhammad Imran Saleem , Mostafa El-Khatib
{"title":"通过纳米技术、共掺杂和增强 rGO 来提高改性 Ho/Cr-FeNdO3-rGO 纳米复合材料去除酒石酸的催化活性","authors":"Basem Al Alwan , Muhammad Aadil , Awais Khalid , Amira Alazmi , Atef El Jery , Mazen R. Alrahili , Mousa M. Hossin , Muhammad Imran Saleem , Mostafa El-Khatib","doi":"10.1016/j.ceramint.2024.10.109","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we used a wet technique to synthesize a novel magnetic retrievable FeNdO<sub>3</sub> perovskite semiconductor codoped with Ho/Cr. We created a nanocomposite by placing an rGO sheet under the semiconductor as a support. The structural, thermal, morphological, optoelectronic, electrical, and surface properties of the synthesized FeNdO<sub>3</sub> (FNO-1), Ho/Cr-FeNdO<sub>3</sub> (FNO-2), and Ho/Cr-FeNdO<sub>3</sub>/rGO (FNO-3) samples were analysed using XRD, FTIR, TGA, SEM, PL, UV/Vis, I–V, and BET. A structural study confirmed that the FNO-1 and FNO-2 samples grew as orthorhombic phases with grain sizes of 21.61 and 18.2 nm, respectively. The SEM and TGA analyses of FNO-3 indicated the presence of perovskite nanoparticles (NPs) modified with r-GO. The composite sample (FNO-3) effectively harvested light photons and had a good conductance (0.43 mA/V) and photocurrent (42.6 mA) and a large specific surface area (61 m<sup>2</sup>g<sup>-1</sup>), demonstrating the positive impact of codoping and rGO reinforcement. Under 70 min of visible light irradiation, the FNO-1, FNO-2, and FNO-3 photocatalysts degraded the azo dye tartrazine with efficiencies of 48.95 %, 65.2 %, and 98.74 %, respectively, indicating the photocatalytic activity of the nanocomposite was considerably higher than those of the codoped and pristine samples. The synthesized nanocomposite mineralized tartrazine with a rate constant of 0.021 min<sup>-1</sup>, where superoxide radicals and free electrons were the predominant reactive species. In this study, nanotechnology, codoping, and compositing were integrated to create a modified perovskite material with exceptional photocatalytic performance and high application potential for water treatment.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 24","pages":"Pages 52583-52594"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergizing nanotechnology, codoping, and reinforcement with rGO to increase the catalytic activity of a modified Ho/Cr-FeNdO3-rGO nanocomposite for tartrazine removal\",\"authors\":\"Basem Al Alwan , Muhammad Aadil , Awais Khalid , Amira Alazmi , Atef El Jery , Mazen R. Alrahili , Mousa M. Hossin , Muhammad Imran Saleem , Mostafa El-Khatib\",\"doi\":\"10.1016/j.ceramint.2024.10.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, we used a wet technique to synthesize a novel magnetic retrievable FeNdO<sub>3</sub> perovskite semiconductor codoped with Ho/Cr. We created a nanocomposite by placing an rGO sheet under the semiconductor as a support. The structural, thermal, morphological, optoelectronic, electrical, and surface properties of the synthesized FeNdO<sub>3</sub> (FNO-1), Ho/Cr-FeNdO<sub>3</sub> (FNO-2), and Ho/Cr-FeNdO<sub>3</sub>/rGO (FNO-3) samples were analysed using XRD, FTIR, TGA, SEM, PL, UV/Vis, I–V, and BET. A structural study confirmed that the FNO-1 and FNO-2 samples grew as orthorhombic phases with grain sizes of 21.61 and 18.2 nm, respectively. The SEM and TGA analyses of FNO-3 indicated the presence of perovskite nanoparticles (NPs) modified with r-GO. The composite sample (FNO-3) effectively harvested light photons and had a good conductance (0.43 mA/V) and photocurrent (42.6 mA) and a large specific surface area (61 m<sup>2</sup>g<sup>-1</sup>), demonstrating the positive impact of codoping and rGO reinforcement. Under 70 min of visible light irradiation, the FNO-1, FNO-2, and FNO-3 photocatalysts degraded the azo dye tartrazine with efficiencies of 48.95 %, 65.2 %, and 98.74 %, respectively, indicating the photocatalytic activity of the nanocomposite was considerably higher than those of the codoped and pristine samples. The synthesized nanocomposite mineralized tartrazine with a rate constant of 0.021 min<sup>-1</sup>, where superoxide radicals and free electrons were the predominant reactive species. In this study, nanotechnology, codoping, and compositing were integrated to create a modified perovskite material with exceptional photocatalytic performance and high application potential for water treatment.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 24\",\"pages\":\"Pages 52583-52594\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224046212\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224046212","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Synergizing nanotechnology, codoping, and reinforcement with rGO to increase the catalytic activity of a modified Ho/Cr-FeNdO3-rGO nanocomposite for tartrazine removal
Herein, we used a wet technique to synthesize a novel magnetic retrievable FeNdO3 perovskite semiconductor codoped with Ho/Cr. We created a nanocomposite by placing an rGO sheet under the semiconductor as a support. The structural, thermal, morphological, optoelectronic, electrical, and surface properties of the synthesized FeNdO3 (FNO-1), Ho/Cr-FeNdO3 (FNO-2), and Ho/Cr-FeNdO3/rGO (FNO-3) samples were analysed using XRD, FTIR, TGA, SEM, PL, UV/Vis, I–V, and BET. A structural study confirmed that the FNO-1 and FNO-2 samples grew as orthorhombic phases with grain sizes of 21.61 and 18.2 nm, respectively. The SEM and TGA analyses of FNO-3 indicated the presence of perovskite nanoparticles (NPs) modified with r-GO. The composite sample (FNO-3) effectively harvested light photons and had a good conductance (0.43 mA/V) and photocurrent (42.6 mA) and a large specific surface area (61 m2g-1), demonstrating the positive impact of codoping and rGO reinforcement. Under 70 min of visible light irradiation, the FNO-1, FNO-2, and FNO-3 photocatalysts degraded the azo dye tartrazine with efficiencies of 48.95 %, 65.2 %, and 98.74 %, respectively, indicating the photocatalytic activity of the nanocomposite was considerably higher than those of the codoped and pristine samples. The synthesized nanocomposite mineralized tartrazine with a rate constant of 0.021 min-1, where superoxide radicals and free electrons were the predominant reactive species. In this study, nanotechnology, codoping, and compositing were integrated to create a modified perovskite material with exceptional photocatalytic performance and high application potential for water treatment.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.