利用方框-贝肯(Box-Behnken)设计,设计、优化和分析用于实验室规模哺乳动物细胞动态培养的新型生物反应器

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-10-09 DOI:10.1016/j.cherd.2024.10.008
Sepehr Govara , S.M. Hosseinalipour , Masoud Soleimani
{"title":"利用方框-贝肯(Box-Behnken)设计,设计、优化和分析用于实验室规模哺乳动物细胞动态培养的新型生物反应器","authors":"Sepehr Govara ,&nbsp;S.M. Hosseinalipour ,&nbsp;Masoud Soleimani","doi":"10.1016/j.cherd.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the quality of dynamic cell culture in laboratories is an important field in bioengineering. In this study, a novel lab-scale bioreactor using a vibrating agitator and a modified flask has been introduced to create a strong mixing at low shear stress. This bioreactor has been optimized using Box-Behnken design based on three dimensionless important structural factors including disc diameter, vibration amplitude, and the height of the disc placement. Three growth indicators including the specific growth rate, the natural logarithm of the maximum cell density, and productivity have been considered as biological responses. The results show that the disc diameter has the most important role in these indicators. If the disc diameter, vibration amplitude, and the height of disc placement are set to 0.24, 0.02, and 0.4 of the flask diameter, respectively, the values of the specific growth rate, the maximum cell density, and productivity at this optimum settings are 0.033 (h<sup>−1</sup>), 13.11, and 5133 (cells/(mL.h)), respectively. These values of the indicators are high and indicate the better performance of this bioreactor than other lab-scale bioreactors. In addition, investigating Reynolds number in the fluid flow indicates that in the range of 780 up to 1150, growth indices are high.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 202-211"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, experimental optimization, and flow analysis of a novel bioreactor for dynamic mammalian cell culture at laboratory scale using Box-Behnken design\",\"authors\":\"Sepehr Govara ,&nbsp;S.M. Hosseinalipour ,&nbsp;Masoud Soleimani\",\"doi\":\"10.1016/j.cherd.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the quality of dynamic cell culture in laboratories is an important field in bioengineering. In this study, a novel lab-scale bioreactor using a vibrating agitator and a modified flask has been introduced to create a strong mixing at low shear stress. This bioreactor has been optimized using Box-Behnken design based on three dimensionless important structural factors including disc diameter, vibration amplitude, and the height of the disc placement. Three growth indicators including the specific growth rate, the natural logarithm of the maximum cell density, and productivity have been considered as biological responses. The results show that the disc diameter has the most important role in these indicators. If the disc diameter, vibration amplitude, and the height of disc placement are set to 0.24, 0.02, and 0.4 of the flask diameter, respectively, the values of the specific growth rate, the maximum cell density, and productivity at this optimum settings are 0.033 (h<sup>−1</sup>), 13.11, and 5133 (cells/(mL.h)), respectively. These values of the indicators are high and indicate the better performance of this bioreactor than other lab-scale bioreactors. In addition, investigating Reynolds number in the fluid flow indicates that in the range of 780 up to 1150, growth indices are high.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"Pages 202-211\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005938\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005938","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高实验室动态细胞培养的质量是生物工程的一个重要领域。在这项研究中,引入了一种新型实验室规模生物反应器,该反应器使用振动搅拌器和改良烧瓶,可在低剪切应力下产生强烈的混合。该生物反应器根据三个无量纲重要结构因素(包括圆盘直径、振动振幅和圆盘放置高度),采用盒式贝肯设计进行了优化。三个生长指标,包括比生长率、最大细胞密度的自然对数和生产率被视为生物反应。结果表明,圆盘直径对这些指标的影响最大。如果将圆盘直径、振幅和圆盘放置高度分别设置为烧瓶直径的 0.24、0.02 和 0.4,在此最佳设置下,比生长率、最大细胞密度和生产率的值分别为 0.033 (h-1)、13.11 和 5133(细胞/(mL.h))。这些指标值较高,表明该生物反应器的性能优于其他实验室规模的生物反应器。此外,对流体流动中雷诺数的研究表明,在 780 到 1150 的范围内,生长指数较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, experimental optimization, and flow analysis of a novel bioreactor for dynamic mammalian cell culture at laboratory scale using Box-Behnken design
Improving the quality of dynamic cell culture in laboratories is an important field in bioengineering. In this study, a novel lab-scale bioreactor using a vibrating agitator and a modified flask has been introduced to create a strong mixing at low shear stress. This bioreactor has been optimized using Box-Behnken design based on three dimensionless important structural factors including disc diameter, vibration amplitude, and the height of the disc placement. Three growth indicators including the specific growth rate, the natural logarithm of the maximum cell density, and productivity have been considered as biological responses. The results show that the disc diameter has the most important role in these indicators. If the disc diameter, vibration amplitude, and the height of disc placement are set to 0.24, 0.02, and 0.4 of the flask diameter, respectively, the values of the specific growth rate, the maximum cell density, and productivity at this optimum settings are 0.033 (h−1), 13.11, and 5133 (cells/(mL.h)), respectively. These values of the indicators are high and indicate the better performance of this bioreactor than other lab-scale bioreactors. In addition, investigating Reynolds number in the fluid flow indicates that in the range of 780 up to 1150, growth indices are high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1