{"title":"电动汽车:电池技术、充电标准、人工智能通信、挑战和未来方向","authors":"Mohammed Amer , Jafar Masri , Alya’ Dababat , Uzair Sajjad , Khalid Hamid","doi":"10.1016/j.ecmx.2024.100751","DOIUrl":null,"url":null,"abstract":"<div><div>Electric vehicles (EVs) have gained significant attention in recent years due to their potential to reduce greenhouse gas emissions and improve energy efficiency. An EV’s main source of power is its battery, which plays a crucial role in determining the vehicle’s overall performance and sustainability. The purpose of this paper is to examine the advancements in battery technology associated with EVs and the various charging standards applicable to EVs. Additionally, the most common types of automotive batteries are described and compared. Moreover, the application of artificial intelligence (AI) in EVs has been discussed. Finally, the challenges associated with EV battery development, as well as suggestions for improvement, are discussed. According to the study, Lithium-ion batteries are the most common in EVs due to their high energy density, long lifespan, and cost-effectiveness, despite their temperature sensitivity. Other battery types, like lead-acid and nickel-based, vary in efficiency, but are less commonly used in modern EVs. Solid-state batteries are seen as the future for their higher energy density and faster charging, though they face challenges like flammability. Wireless charging technology, still in development, promises superior convenience and sustainability than traditional methods. AI improves EV performance through enhanced battery management, autonomous driving, vehicle-to-grid communication, etc. Overcoming challenges like battery recycling, metal scarcity, and charging infrastructure will be crucial for the widespread adoption of EVs. This will be supported by government policies and battery technology innovations.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100751"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric vehicles: Battery technologies, charging standards, AI communications, challenges, and future directions\",\"authors\":\"Mohammed Amer , Jafar Masri , Alya’ Dababat , Uzair Sajjad , Khalid Hamid\",\"doi\":\"10.1016/j.ecmx.2024.100751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electric vehicles (EVs) have gained significant attention in recent years due to their potential to reduce greenhouse gas emissions and improve energy efficiency. An EV’s main source of power is its battery, which plays a crucial role in determining the vehicle’s overall performance and sustainability. The purpose of this paper is to examine the advancements in battery technology associated with EVs and the various charging standards applicable to EVs. Additionally, the most common types of automotive batteries are described and compared. Moreover, the application of artificial intelligence (AI) in EVs has been discussed. Finally, the challenges associated with EV battery development, as well as suggestions for improvement, are discussed. According to the study, Lithium-ion batteries are the most common in EVs due to their high energy density, long lifespan, and cost-effectiveness, despite their temperature sensitivity. Other battery types, like lead-acid and nickel-based, vary in efficiency, but are less commonly used in modern EVs. Solid-state batteries are seen as the future for their higher energy density and faster charging, though they face challenges like flammability. Wireless charging technology, still in development, promises superior convenience and sustainability than traditional methods. AI improves EV performance through enhanced battery management, autonomous driving, vehicle-to-grid communication, etc. Overcoming challenges like battery recycling, metal scarcity, and charging infrastructure will be crucial for the widespread adoption of EVs. This will be supported by government policies and battery technology innovations.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100751\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Electric vehicles: Battery technologies, charging standards, AI communications, challenges, and future directions
Electric vehicles (EVs) have gained significant attention in recent years due to their potential to reduce greenhouse gas emissions and improve energy efficiency. An EV’s main source of power is its battery, which plays a crucial role in determining the vehicle’s overall performance and sustainability. The purpose of this paper is to examine the advancements in battery technology associated with EVs and the various charging standards applicable to EVs. Additionally, the most common types of automotive batteries are described and compared. Moreover, the application of artificial intelligence (AI) in EVs has been discussed. Finally, the challenges associated with EV battery development, as well as suggestions for improvement, are discussed. According to the study, Lithium-ion batteries are the most common in EVs due to their high energy density, long lifespan, and cost-effectiveness, despite their temperature sensitivity. Other battery types, like lead-acid and nickel-based, vary in efficiency, but are less commonly used in modern EVs. Solid-state batteries are seen as the future for their higher energy density and faster charging, though they face challenges like flammability. Wireless charging technology, still in development, promises superior convenience and sustainability than traditional methods. AI improves EV performance through enhanced battery management, autonomous driving, vehicle-to-grid communication, etc. Overcoming challenges like battery recycling, metal scarcity, and charging infrastructure will be crucial for the widespread adoption of EVs. This will be supported by government policies and battery technology innovations.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.