{"title":"遮光会增加紫花苜蓿(Medicago sativa)对 Pst.DC3000 的敏感性。","authors":"Yuguang Song, Xueying Sun, Xinying Guo, Xinru Ding, Jifeng Chen, Haoyan Tang, Zhaoran Zhang, Wei Dong","doi":"10.1016/j.plaphy.2024.109191","DOIUrl":null,"url":null,"abstract":"<div><div>Shade is a stressful factor for most plants, leading to both morphological and physiological changes, and often resulting in increased susceptibility to diseases and pathogen attacks. Our study revealed that the isoflavonoid synthesis pathway was inhibited in alfalfa under shade, resulting in a significant reduction in disease resistance. Overexpression of <em>MsIFS1</em>, a switch regulator in isoflavonoid synthesis, led to a notable increase in endogenous isoflavonoids and enhanced resistance to <em>Pseudomonas syringae pv</em>. tomato DC3000 (<em>Pst</em>. DC3000). Conversely, <em>MsIFS1</em>-RNAi had the opposite effect. Yeast one-hybrid (Y1H) assays revealed that the shade-responsive transcription factor MsWRKY41 could directly bind to the <em>MsIFS1</em> promoter. This interaction was confirmed through Dual-Luciferase Reporter (Dual-LUC) and Chromatin Immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays, both <em>in vitro</em> and <em>in vivo</em>. Overexpression of <em>MsWRKY41</em> not only enhanced alfalfa's resistance to <em>Pst</em>. DC3000 but also promoted the accumulation of isoflavonoids. Additionally, yeast two-hybrid (Y2H) assays showed that neither MsWRKY41 nor MsIFS1 physically interacted with the Type III effector (T3SE) HopZ1 secreted by <em>Pst</em>. DC3000, suggesting that the MsWRKY41-MsIFS1 module is not a direct target of HopZ1. These findings provide valuable theoretical insights and genetic resources for the development of shade-tolerant alfalfa with enhanced disease resistance.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"216 ","pages":"Article 109191"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shading increases the susceptibility of alfalfa (Medicago sativa) to Pst. DC3000 by inhibiting the expression of MsIFS1\",\"authors\":\"Yuguang Song, Xueying Sun, Xinying Guo, Xinru Ding, Jifeng Chen, Haoyan Tang, Zhaoran Zhang, Wei Dong\",\"doi\":\"10.1016/j.plaphy.2024.109191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shade is a stressful factor for most plants, leading to both morphological and physiological changes, and often resulting in increased susceptibility to diseases and pathogen attacks. Our study revealed that the isoflavonoid synthesis pathway was inhibited in alfalfa under shade, resulting in a significant reduction in disease resistance. Overexpression of <em>MsIFS1</em>, a switch regulator in isoflavonoid synthesis, led to a notable increase in endogenous isoflavonoids and enhanced resistance to <em>Pseudomonas syringae pv</em>. tomato DC3000 (<em>Pst</em>. DC3000). Conversely, <em>MsIFS1</em>-RNAi had the opposite effect. Yeast one-hybrid (Y1H) assays revealed that the shade-responsive transcription factor MsWRKY41 could directly bind to the <em>MsIFS1</em> promoter. This interaction was confirmed through Dual-Luciferase Reporter (Dual-LUC) and Chromatin Immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays, both <em>in vitro</em> and <em>in vivo</em>. Overexpression of <em>MsWRKY41</em> not only enhanced alfalfa's resistance to <em>Pst</em>. DC3000 but also promoted the accumulation of isoflavonoids. Additionally, yeast two-hybrid (Y2H) assays showed that neither MsWRKY41 nor MsIFS1 physically interacted with the Type III effector (T3SE) HopZ1 secreted by <em>Pst</em>. DC3000, suggesting that the MsWRKY41-MsIFS1 module is not a direct target of HopZ1. These findings provide valuable theoretical insights and genetic resources for the development of shade-tolerant alfalfa with enhanced disease resistance.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"216 \",\"pages\":\"Article 109191\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824008593\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824008593","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Shading increases the susceptibility of alfalfa (Medicago sativa) to Pst. DC3000 by inhibiting the expression of MsIFS1
Shade is a stressful factor for most plants, leading to both morphological and physiological changes, and often resulting in increased susceptibility to diseases and pathogen attacks. Our study revealed that the isoflavonoid synthesis pathway was inhibited in alfalfa under shade, resulting in a significant reduction in disease resistance. Overexpression of MsIFS1, a switch regulator in isoflavonoid synthesis, led to a notable increase in endogenous isoflavonoids and enhanced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Conversely, MsIFS1-RNAi had the opposite effect. Yeast one-hybrid (Y1H) assays revealed that the shade-responsive transcription factor MsWRKY41 could directly bind to the MsIFS1 promoter. This interaction was confirmed through Dual-Luciferase Reporter (Dual-LUC) and Chromatin Immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays, both in vitro and in vivo. Overexpression of MsWRKY41 not only enhanced alfalfa's resistance to Pst. DC3000 but also promoted the accumulation of isoflavonoids. Additionally, yeast two-hybrid (Y2H) assays showed that neither MsWRKY41 nor MsIFS1 physically interacted with the Type III effector (T3SE) HopZ1 secreted by Pst. DC3000, suggesting that the MsWRKY41-MsIFS1 module is not a direct target of HopZ1. These findings provide valuable theoretical insights and genetic resources for the development of shade-tolerant alfalfa with enhanced disease resistance.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.