通过不确定性感知邻域样本选择进行标签噪声学习

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-10-01 DOI:10.1016/j.patrec.2024.09.012
Yiliang Zhang, Yang Lu, Hanzi Wang
{"title":"通过不确定性感知邻域样本选择进行标签噪声学习","authors":"Yiliang Zhang,&nbsp;Yang Lu,&nbsp;Hanzi Wang","doi":"10.1016/j.patrec.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Existing deep learning methods often require a large amount of high-quality labeled data. Yet, the presence of noisy labels in the real-world training data seriously affects the generalization ability of the model. Sample selection techniques, the current dominant approach to mitigating the effects of noisy labels on models, use the consistency of sample predictions and observed labels to make clean selections. However, these methods rely heavily on the accuracy of the sample predictions and inevitably suffer when the model predictions are unstable. To address these issues, we propose an uncertainty-aware neighborhood sample selection method. Especially, it calibrates for sample prediction by neighbor prediction and reassigns model attention to the selected samples based on sample uncertainty. By alleviating the influence of prediction bias on sample selection and avoiding the occurrence of prediction bias, our proposed method achieves excellent performance in extensive experiments. In particular, we achieved an average of 5% improvement in asymmetric noise scenarios.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 191-197"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-noise learning via uncertainty-aware neighborhood sample selection\",\"authors\":\"Yiliang Zhang,&nbsp;Yang Lu,&nbsp;Hanzi Wang\",\"doi\":\"10.1016/j.patrec.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing deep learning methods often require a large amount of high-quality labeled data. Yet, the presence of noisy labels in the real-world training data seriously affects the generalization ability of the model. Sample selection techniques, the current dominant approach to mitigating the effects of noisy labels on models, use the consistency of sample predictions and observed labels to make clean selections. However, these methods rely heavily on the accuracy of the sample predictions and inevitably suffer when the model predictions are unstable. To address these issues, we propose an uncertainty-aware neighborhood sample selection method. Especially, it calibrates for sample prediction by neighbor prediction and reassigns model attention to the selected samples based on sample uncertainty. By alleviating the influence of prediction bias on sample selection and avoiding the occurrence of prediction bias, our proposed method achieves excellent performance in extensive experiments. In particular, we achieved an average of 5% improvement in asymmetric noise scenarios.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 191-197\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002745\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002745","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的深度学习方法通常需要大量高质量的标记数据。然而,真实世界训练数据中存在的噪声标签会严重影响模型的泛化能力。样本选择技术是目前减轻噪声标签对模型影响的主流方法,它利用样本预测和观察到的标签的一致性来进行干净的选择。然而,这些方法在很大程度上依赖于样本预测的准确性,当模型预测不稳定时,这些方法不可避免地会受到影响。为了解决这些问题,我们提出了一种不确定性感知邻域样本选择方法。特别是,它通过邻域预测对样本预测进行校准,并根据样本的不确定性重新分配模型对所选样本的关注度。通过减轻预测偏差对样本选择的影响和避免预测偏差的发生,我们提出的方法在大量实验中取得了优异的性能。特别是在非对称噪声场景下,我们平均提高了 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Label-noise learning via uncertainty-aware neighborhood sample selection
Existing deep learning methods often require a large amount of high-quality labeled data. Yet, the presence of noisy labels in the real-world training data seriously affects the generalization ability of the model. Sample selection techniques, the current dominant approach to mitigating the effects of noisy labels on models, use the consistency of sample predictions and observed labels to make clean selections. However, these methods rely heavily on the accuracy of the sample predictions and inevitably suffer when the model predictions are unstable. To address these issues, we propose an uncertainty-aware neighborhood sample selection method. Especially, it calibrates for sample prediction by neighbor prediction and reassigns model attention to the selected samples based on sample uncertainty. By alleviating the influence of prediction bias on sample selection and avoiding the occurrence of prediction bias, our proposed method achieves excellent performance in extensive experiments. In particular, we achieved an average of 5% improvement in asymmetric noise scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1