{"title":"通过不确定性感知邻域样本选择进行标签噪声学习","authors":"Yiliang Zhang, Yang Lu, Hanzi Wang","doi":"10.1016/j.patrec.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Existing deep learning methods often require a large amount of high-quality labeled data. Yet, the presence of noisy labels in the real-world training data seriously affects the generalization ability of the model. Sample selection techniques, the current dominant approach to mitigating the effects of noisy labels on models, use the consistency of sample predictions and observed labels to make clean selections. However, these methods rely heavily on the accuracy of the sample predictions and inevitably suffer when the model predictions are unstable. To address these issues, we propose an uncertainty-aware neighborhood sample selection method. Especially, it calibrates for sample prediction by neighbor prediction and reassigns model attention to the selected samples based on sample uncertainty. By alleviating the influence of prediction bias on sample selection and avoiding the occurrence of prediction bias, our proposed method achieves excellent performance in extensive experiments. In particular, we achieved an average of 5% improvement in asymmetric noise scenarios.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 191-197"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-noise learning via uncertainty-aware neighborhood sample selection\",\"authors\":\"Yiliang Zhang, Yang Lu, Hanzi Wang\",\"doi\":\"10.1016/j.patrec.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing deep learning methods often require a large amount of high-quality labeled data. Yet, the presence of noisy labels in the real-world training data seriously affects the generalization ability of the model. Sample selection techniques, the current dominant approach to mitigating the effects of noisy labels on models, use the consistency of sample predictions and observed labels to make clean selections. However, these methods rely heavily on the accuracy of the sample predictions and inevitably suffer when the model predictions are unstable. To address these issues, we propose an uncertainty-aware neighborhood sample selection method. Especially, it calibrates for sample prediction by neighbor prediction and reassigns model attention to the selected samples based on sample uncertainty. By alleviating the influence of prediction bias on sample selection and avoiding the occurrence of prediction bias, our proposed method achieves excellent performance in extensive experiments. In particular, we achieved an average of 5% improvement in asymmetric noise scenarios.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 191-197\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002745\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002745","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Label-noise learning via uncertainty-aware neighborhood sample selection
Existing deep learning methods often require a large amount of high-quality labeled data. Yet, the presence of noisy labels in the real-world training data seriously affects the generalization ability of the model. Sample selection techniques, the current dominant approach to mitigating the effects of noisy labels on models, use the consistency of sample predictions and observed labels to make clean selections. However, these methods rely heavily on the accuracy of the sample predictions and inevitably suffer when the model predictions are unstable. To address these issues, we propose an uncertainty-aware neighborhood sample selection method. Especially, it calibrates for sample prediction by neighbor prediction and reassigns model attention to the selected samples based on sample uncertainty. By alleviating the influence of prediction bias on sample selection and avoiding the occurrence of prediction bias, our proposed method achieves excellent performance in extensive experiments. In particular, we achieved an average of 5% improvement in asymmetric noise scenarios.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.