{"title":"利用数值器件建模对无结环形场效应晶体管结构和基于无结环形场效应晶体管的逆变器电路进行软误差分析","authors":"Ramya M., Nagarajan K.K.","doi":"10.1016/j.microrel.2024.115521","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of junctionless ringFETs under heavy ion irradiation is investigated utilizing 3D TCAD simulations. The vulnerable location of the ringFET device is identified by conducting a single-event transient analysis on the interaction of an ionizing particle, particularly a heavy ion, with various LET values. The analysis focused on both the inner and outer drain configurations. The drain region is the most vulnerable location in an inner drain configuration, whereas the channel near the drain region is the most vulnerable location in an outer drain configuration of a junctionless ringFET. The source region of a junctionless ringFET is the least vulnerable location in both the inner and outer drain configurations. An Inverter circuit built using junctionless ringFETs utilizing inner and outer drain configurations is also subjected to single-event transient analysis. The junctionless ringFET with an inner drain configuration is better for use in areas where radiation is a concern since its collected charge is lower than that of the outer drain configuration.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"162 ","pages":"Article 115521"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft error analysis on junctionless ringFET structures and junctionless ringFET-based inverter circuits using numerical device modeling\",\"authors\":\"Ramya M., Nagarajan K.K.\",\"doi\":\"10.1016/j.microrel.2024.115521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of junctionless ringFETs under heavy ion irradiation is investigated utilizing 3D TCAD simulations. The vulnerable location of the ringFET device is identified by conducting a single-event transient analysis on the interaction of an ionizing particle, particularly a heavy ion, with various LET values. The analysis focused on both the inner and outer drain configurations. The drain region is the most vulnerable location in an inner drain configuration, whereas the channel near the drain region is the most vulnerable location in an outer drain configuration of a junctionless ringFET. The source region of a junctionless ringFET is the least vulnerable location in both the inner and outer drain configurations. An Inverter circuit built using junctionless ringFETs utilizing inner and outer drain configurations is also subjected to single-event transient analysis. The junctionless ringFET with an inner drain configuration is better for use in areas where radiation is a concern since its collected charge is lower than that of the outer drain configuration.</div></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"162 \",\"pages\":\"Article 115521\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424002014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424002014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
利用三维 TCAD 仿真研究了无结环形场效应晶体管在重离子辐照下的性能。通过对不同 LET 值的电离粒子(尤其是重离子)的相互作用进行单事件瞬态分析,确定了环形场效应晶体管器件的易损位置。分析的重点是内部和外部漏极配置。在无结环形场效应晶体管的内漏极配置中,漏极区是最脆弱的位置,而在外漏极配置中,漏极区附近的沟道则是最脆弱的位置。在内漏极和外漏极配置中,无结环型场效应晶体管的源极区都是最不脆弱的位置。使用无结环形场效应晶体管(采用内漏极和外漏极配置)构建的逆变器电路也要进行单事件瞬态分析。由于内漏极结构的无结环形场效应晶体管收集的电荷比外漏极结构的低,因此更适合在有辐射问题的地区使用。
Soft error analysis on junctionless ringFET structures and junctionless ringFET-based inverter circuits using numerical device modeling
The performance of junctionless ringFETs under heavy ion irradiation is investigated utilizing 3D TCAD simulations. The vulnerable location of the ringFET device is identified by conducting a single-event transient analysis on the interaction of an ionizing particle, particularly a heavy ion, with various LET values. The analysis focused on both the inner and outer drain configurations. The drain region is the most vulnerable location in an inner drain configuration, whereas the channel near the drain region is the most vulnerable location in an outer drain configuration of a junctionless ringFET. The source region of a junctionless ringFET is the least vulnerable location in both the inner and outer drain configurations. An Inverter circuit built using junctionless ringFETs utilizing inner and outer drain configurations is also subjected to single-event transient analysis. The junctionless ringFET with an inner drain configuration is better for use in areas where radiation is a concern since its collected charge is lower than that of the outer drain configuration.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.