Li Wang , Hongjie Luo , Shijie Yang , Shibo Cui , Linli Wu
{"title":"通过热压和发泡工艺实现钢面板/铝泡沫夹层的冶金结合:界面微结构演变和拉伸行为","authors":"Li Wang , Hongjie Luo , Shijie Yang , Shibo Cui , Linli Wu","doi":"10.1016/j.jmatprotec.2024.118636","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative approach to fabricating aluminum foam sandwich with aluminized steel faceplates through metallurgical bonding. The process involves the use of foamable precursor, prepared via melt stirring, and subsequent hot pressing and foaming, offering a cost-effective and industrially feasible method for producing lightweight structural materials and connection of steel/aluminum dissimilar metals. This study focuses on exploring the changes in the microstructure of the bonding interface before and after foaming, and revealing the impact of these changes on the tensile results. Foaming experiment shows that foamable sandwiches have superior foaming ability, and the core layer density after foaming is between 0.283 and 0.591 g/cm ³. Microstructural characterization results demonstrate that, during the hot pressing process, fine equiaxed grains are observed on the iron side of the interface, indicating dynamic recrystallization occurred. The formation of a small amount of η-Al<sub>5</sub>Fe<sub>2</sub> at the interface is a primary factor causing the deflection of the fracture path. Subsequently, during the foaming process, intermetallic compounds (IMCs) θ-Al<sub>13</sub>Fe<sub>4</sub>, τ5-Al<sub>7</sub>Fe<sub>2</sub>Si, and β-Al<sub>4.5</sub>FeSi formed sequentially, mainly determined by the diffusion reaction of silicon elements. The formation of these IMCs led to an increase in microhardness at the interface and a decrease in shear strength. Digital image correlation was utilized to examine strain distribution under tensile loading. The result indicates that the damage accumulation is characterized by the formation and expansion of strain bands, with failure manifested as the interconnection of these strain bands.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"334 ","pages":"Article 118636"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving metallurgical bonding in steel faceplate/aluminum foam sandwich via hot pressing and foaming processes: interfacial microstructure evolution and tensile behavior\",\"authors\":\"Li Wang , Hongjie Luo , Shijie Yang , Shibo Cui , Linli Wu\",\"doi\":\"10.1016/j.jmatprotec.2024.118636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces an innovative approach to fabricating aluminum foam sandwich with aluminized steel faceplates through metallurgical bonding. The process involves the use of foamable precursor, prepared via melt stirring, and subsequent hot pressing and foaming, offering a cost-effective and industrially feasible method for producing lightweight structural materials and connection of steel/aluminum dissimilar metals. This study focuses on exploring the changes in the microstructure of the bonding interface before and after foaming, and revealing the impact of these changes on the tensile results. Foaming experiment shows that foamable sandwiches have superior foaming ability, and the core layer density after foaming is between 0.283 and 0.591 g/cm ³. Microstructural characterization results demonstrate that, during the hot pressing process, fine equiaxed grains are observed on the iron side of the interface, indicating dynamic recrystallization occurred. The formation of a small amount of η-Al<sub>5</sub>Fe<sub>2</sub> at the interface is a primary factor causing the deflection of the fracture path. Subsequently, during the foaming process, intermetallic compounds (IMCs) θ-Al<sub>13</sub>Fe<sub>4</sub>, τ5-Al<sub>7</sub>Fe<sub>2</sub>Si, and β-Al<sub>4.5</sub>FeSi formed sequentially, mainly determined by the diffusion reaction of silicon elements. The formation of these IMCs led to an increase in microhardness at the interface and a decrease in shear strength. Digital image correlation was utilized to examine strain distribution under tensile loading. The result indicates that the damage accumulation is characterized by the formation and expansion of strain bands, with failure manifested as the interconnection of these strain bands.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"334 \",\"pages\":\"Article 118636\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624003546\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003546","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Achieving metallurgical bonding in steel faceplate/aluminum foam sandwich via hot pressing and foaming processes: interfacial microstructure evolution and tensile behavior
This study introduces an innovative approach to fabricating aluminum foam sandwich with aluminized steel faceplates through metallurgical bonding. The process involves the use of foamable precursor, prepared via melt stirring, and subsequent hot pressing and foaming, offering a cost-effective and industrially feasible method for producing lightweight structural materials and connection of steel/aluminum dissimilar metals. This study focuses on exploring the changes in the microstructure of the bonding interface before and after foaming, and revealing the impact of these changes on the tensile results. Foaming experiment shows that foamable sandwiches have superior foaming ability, and the core layer density after foaming is between 0.283 and 0.591 g/cm ³. Microstructural characterization results demonstrate that, during the hot pressing process, fine equiaxed grains are observed on the iron side of the interface, indicating dynamic recrystallization occurred. The formation of a small amount of η-Al5Fe2 at the interface is a primary factor causing the deflection of the fracture path. Subsequently, during the foaming process, intermetallic compounds (IMCs) θ-Al13Fe4, τ5-Al7Fe2Si, and β-Al4.5FeSi formed sequentially, mainly determined by the diffusion reaction of silicon elements. The formation of these IMCs led to an increase in microhardness at the interface and a decrease in shear strength. Digital image correlation was utilized to examine strain distribution under tensile loading. The result indicates that the damage accumulation is characterized by the formation and expansion of strain bands, with failure manifested as the interconnection of these strain bands.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.