生、死与能量:大自然选择了什么?

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-10-15 DOI:10.1111/ele.14517
James H. Brown, Chen Hou, Charles A. S. Hall, Joseph R. Burger
{"title":"生、死与能量:大自然选择了什么?","authors":"James H. Brown,&nbsp;Chen Hou,&nbsp;Charles A. S. Hall,&nbsp;Joseph R. Burger","doi":"10.1111/ele.14517","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>=</mo>\n <msub>\n <mi>P</mi>\n <mi>coh</mi>\n </msub>\n <mi>GFQ</mi>\n </mrow>\n <annotation>$$ E={P}_{\\mathrm{coh}}\\mathrm{GFQ} $$</annotation>\n </semantics></math>, where<span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <msub>\n <mi>P</mi>\n <mi>coh</mi>\n </msub>\n </mrow>\n <annotation>$$ {P}_{\\mathrm{coh}} $$</annotation>\n </semantics></math> is mass-specific rate of cohort biomass production, <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation>$$ G $$</annotation>\n </semantics></math> is generation time, <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math> is fraction of cohort production that is passed to <i>surviving</i> offspring, and <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation>$$ Q $$</annotation>\n </semantics></math> is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n </mrow>\n <annotation>$$ E $$</annotation>\n </semantics></math> ≈ 22.4 kJ/g, and biomass, <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation>$$ M $$</annotation>\n </semantics></math> ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation>$$ M $$</annotation>\n </semantics></math>; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 10","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life, Death and Energy: What Does Nature Select?\",\"authors\":\"James H. Brown,&nbsp;Chen Hou,&nbsp;Charles A. S. Hall,&nbsp;Joseph R. Burger\",\"doi\":\"10.1111/ele.14517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>P</mi>\\n <mi>coh</mi>\\n </msub>\\n <mi>GFQ</mi>\\n </mrow>\\n <annotation>$$ E={P}_{\\\\mathrm{coh}}\\\\mathrm{GFQ} $$</annotation>\\n </semantics></math>, where<span></span><math>\\n <semantics>\\n <mrow>\\n <mspace></mspace>\\n <msub>\\n <mi>P</mi>\\n <mi>coh</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {P}_{\\\\mathrm{coh}} $$</annotation>\\n </semantics></math> is mass-specific rate of cohort biomass production, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$$ G $$</annotation>\\n </semantics></math> is generation time, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation>$$ F $$</annotation>\\n </semantics></math> is fraction of cohort production that is passed to <i>surviving</i> offspring, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$$ Q $$</annotation>\\n </semantics></math> is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$$ E $$</annotation>\\n </semantics></math> ≈ 22.4 kJ/g, and biomass, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$$ M $$</annotation>\\n </semantics></math> ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$$ M $$</annotation>\\n </semantics></math>; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.</p>\\n </div>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 10\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14517\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14517","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

进化生物学准备进行第三次重大综合。第一次综合介绍了达尔文从自然史中获得的证据。第二次综合了遗传机制。第三次将以能量和生物物理过程为基础。它应该包括平等适存范式(EFP),该范式量化了生物如何将生物量转化为存活的后代。自然选择倾向于最大化能量适宜性,即 E = P coh GFQ $$ E={P}_{mathrm{coh}}\mathrm{GFQ} $$ ,其中 P coh $$ {P}_{mathrm{coh}} $$ 是质量特定的繁殖率。$$ 是群落生物量的特定质量生产率,G $$ G $$ 是世代时间,F $$ F $$ 是传给存活后代的群落生产量的百分比,Q $$ Q $$ 是生物量的能量密度。在稳定状态下,亲代用质量比能量含量(E $$ E $$ ≈ 22.4 kJ/g)和生物量(M $$ M $$ ≈ 1 g/g)相等的子代取代自己。EFP强调:(i) 生存和繁殖的能量基础;(ii) 自然选择如何直接作用于M $$ M $$ 的参数;(iii) 为什么较高的代谢能力、本体或种群增长率、繁殖力、寿命或资源利用效率没有固有的内在适应优势;以及(iv) 能量在具有不同生活史的动物中的作用。生物种类繁多,但在如何从环境中获取能量并利用能量为后代留下后代方面却普遍存在着相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life, Death and Energy: What Does Nature Select?

Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, E = P coh GFQ $$ E={P}_{\mathrm{coh}}\mathrm{GFQ} $$ , where P coh $$ {P}_{\mathrm{coh}} $$ is mass-specific rate of cohort biomass production, G $$ G $$ is generation time, F $$ F $$ is fraction of cohort production that is passed to surviving offspring, and Q $$ Q $$ is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, E $$ E $$  ≈ 22.4 kJ/g, and biomass, M $$ M $$  ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of M $$ M $$ ; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
The Impact of Microbial Interactions on Ecosystem Function Intensifies Under Stress Mycorrhizal Types Regulate Tree Spatial Associations in Temperate Forests: Ectomycorrhizal Trees Might Favour Species Coexistence Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition Seasonality Structures Avian Functional Diversity and Niche Packing Across North America
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1