James H. Brown, Chen Hou, Charles A. S. Hall, Joseph R. Burger
{"title":"生、死与能量:大自然选择了什么?","authors":"James H. Brown, Chen Hou, Charles A. S. Hall, Joseph R. Burger","doi":"10.1111/ele.14517","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>=</mo>\n <msub>\n <mi>P</mi>\n <mi>coh</mi>\n </msub>\n <mi>GFQ</mi>\n </mrow>\n <annotation>$$ E={P}_{\\mathrm{coh}}\\mathrm{GFQ} $$</annotation>\n </semantics></math>, where<span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <msub>\n <mi>P</mi>\n <mi>coh</mi>\n </msub>\n </mrow>\n <annotation>$$ {P}_{\\mathrm{coh}} $$</annotation>\n </semantics></math> is mass-specific rate of cohort biomass production, <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation>$$ G $$</annotation>\n </semantics></math> is generation time, <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math> is fraction of cohort production that is passed to <i>surviving</i> offspring, and <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation>$$ Q $$</annotation>\n </semantics></math> is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n </mrow>\n <annotation>$$ E $$</annotation>\n </semantics></math> ≈ 22.4 kJ/g, and biomass, <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation>$$ M $$</annotation>\n </semantics></math> ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation>$$ M $$</annotation>\n </semantics></math>; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 10","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life, Death and Energy: What Does Nature Select?\",\"authors\":\"James H. Brown, Chen Hou, Charles A. S. Hall, Joseph R. Burger\",\"doi\":\"10.1111/ele.14517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>P</mi>\\n <mi>coh</mi>\\n </msub>\\n <mi>GFQ</mi>\\n </mrow>\\n <annotation>$$ E={P}_{\\\\mathrm{coh}}\\\\mathrm{GFQ} $$</annotation>\\n </semantics></math>, where<span></span><math>\\n <semantics>\\n <mrow>\\n <mspace></mspace>\\n <msub>\\n <mi>P</mi>\\n <mi>coh</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {P}_{\\\\mathrm{coh}} $$</annotation>\\n </semantics></math> is mass-specific rate of cohort biomass production, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$$ G $$</annotation>\\n </semantics></math> is generation time, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation>$$ F $$</annotation>\\n </semantics></math> is fraction of cohort production that is passed to <i>surviving</i> offspring, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$$ Q $$</annotation>\\n </semantics></math> is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$$ E $$</annotation>\\n </semantics></math> ≈ 22.4 kJ/g, and biomass, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$$ M $$</annotation>\\n </semantics></math> ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$$ M $$</annotation>\\n </semantics></math>; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.</p>\\n </div>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 10\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14517\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14517","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
进化生物学准备进行第三次重大综合。第一次综合介绍了达尔文从自然史中获得的证据。第二次综合了遗传机制。第三次将以能量和生物物理过程为基础。它应该包括平等适存范式(EFP),该范式量化了生物如何将生物量转化为存活的后代。自然选择倾向于最大化能量适宜性,即 E = P coh GFQ $$ E={P}_{mathrm{coh}}\mathrm{GFQ} $$ ,其中 P coh $$ {P}_{mathrm{coh}} $$ 是质量特定的繁殖率。$$ 是群落生物量的特定质量生产率,G $$ G $$ 是世代时间,F $$ F $$ 是传给存活后代的群落生产量的百分比,Q $$ Q $$ 是生物量的能量密度。在稳定状态下,亲代用质量比能量含量(E $$ E $$ ≈ 22.4 kJ/g)和生物量(M $$ M $$ ≈ 1 g/g)相等的子代取代自己。EFP强调:(i) 生存和繁殖的能量基础;(ii) 自然选择如何直接作用于M $$ M $$ 的参数;(iii) 为什么较高的代谢能力、本体或种群增长率、繁殖力、寿命或资源利用效率没有固有的内在适应优势;以及(iv) 能量在具有不同生活史的动物中的作用。生物种类繁多,但在如何从环境中获取能量并利用能量为后代留下后代方面却普遍存在着相似性。
Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, , where is mass-specific rate of cohort biomass production, is generation time, is fraction of cohort production that is passed to surviving offspring, and is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, ≈ 22.4 kJ/g, and biomass, ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of ; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.