用掺稀土纳米棒的偏振发光法测定具有可调流变性的流体的流变学特性

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-15 DOI:10.1021/acsnano.4c09493
Zijun Wang, Qilin Zou, Lilian Magermans, Gabriel Amselem, Claire A. Dessalles, Bruno Louis, Marcel Filoche, Thierry Gacoin, Jongwook Kim
{"title":"用掺稀土纳米棒的偏振发光法测定具有可调流变性的流体的流变学特性","authors":"Zijun Wang, Qilin Zou, Lilian Magermans, Gabriel Amselem, Claire A. Dessalles, Bruno Louis, Marcel Filoche, Thierry Gacoin, Jongwook Kim","doi":"10.1021/acsnano.4c09493","DOIUrl":null,"url":null,"abstract":"Shear stress plays a critical role in regulating physiological processes within microcirculatory systems. While particle imaging velocimetry is a standard technique for quantifying shear flow, uncertainty near boundaries and low resolution remain severe restrictions. Additionally, shear stress determination is particularly challenging in biofluids due to their significant non-Newtonian behaviors. The present study develops a shearmetry technique in physiological settings using a biomimetic fluid containing rare earth-doped luminescent nanorods acting in two roles. First, they are used as colloidal additives adjusting rheological properties in physiological media. Their anisotropic morphology and interparticle interaction synergistically induce a non-Newtonian shear-thinning effect emulating real biofluids. Second, they can probe shear stress due to the shear-induced alignment. The polarized luminescence of the nanorods allows for quantifying their orientational order parameter and thus correlated shear stress. Using scanning confocal microscopy, we demonstrate the tomographic mapping of the shear stress distribution in microfluidics. High shear stress is evident near the constriction and the cellular periphery, in which non-Newtonian effects can have a significant impact. This emerging shearmetry technique is promising for implementation in physiological and rheological environments of biofluids.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shearmetry of Fluids with Tunable Rheology by Polarized Luminescence of Rare Earth-Doped Nanorods\",\"authors\":\"Zijun Wang, Qilin Zou, Lilian Magermans, Gabriel Amselem, Claire A. Dessalles, Bruno Louis, Marcel Filoche, Thierry Gacoin, Jongwook Kim\",\"doi\":\"10.1021/acsnano.4c09493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shear stress plays a critical role in regulating physiological processes within microcirculatory systems. While particle imaging velocimetry is a standard technique for quantifying shear flow, uncertainty near boundaries and low resolution remain severe restrictions. Additionally, shear stress determination is particularly challenging in biofluids due to their significant non-Newtonian behaviors. The present study develops a shearmetry technique in physiological settings using a biomimetic fluid containing rare earth-doped luminescent nanorods acting in two roles. First, they are used as colloidal additives adjusting rheological properties in physiological media. Their anisotropic morphology and interparticle interaction synergistically induce a non-Newtonian shear-thinning effect emulating real biofluids. Second, they can probe shear stress due to the shear-induced alignment. The polarized luminescence of the nanorods allows for quantifying their orientational order parameter and thus correlated shear stress. Using scanning confocal microscopy, we demonstrate the tomographic mapping of the shear stress distribution in microfluidics. High shear stress is evident near the constriction and the cellular periphery, in which non-Newtonian effects can have a significant impact. This emerging shearmetry technique is promising for implementation in physiological and rheological environments of biofluids.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09493\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

剪切应力在调节微循环系统的生理过程中起着至关重要的作用。虽然粒子成像测速仪是量化剪切流的标准技术,但边界附近的不确定性和低分辨率仍然是严重的限制因素。此外,由于生物流体具有显著的非牛顿行为,因此在生物流体中测定剪应力尤其具有挑战性。本研究利用含有稀土掺杂发光纳米棒的仿生流体,开发了一种在生理环境下的剪切应力测量技术。首先,它们被用作胶体添加剂,可调节生理介质中的流变特性。它们的各向异性形态和颗粒间的相互作用协同诱导出模拟真实生物流体的非牛顿剪切稀化效应。其次,由于剪切力引起的排列,它们可以探测剪切应力。通过纳米棒的偏振发光,可以量化它们的定向有序参数,从而量化相关的剪切应力。利用扫描共聚焦显微镜,我们展示了微流体中剪切应力分布的层析成像图。高剪切应力在收缩和细胞外围附近很明显,其中非牛顿效应会产生重大影响。这种新兴的剪切应力测量技术有望应用于生物流体的生理和流变环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shearmetry of Fluids with Tunable Rheology by Polarized Luminescence of Rare Earth-Doped Nanorods
Shear stress plays a critical role in regulating physiological processes within microcirculatory systems. While particle imaging velocimetry is a standard technique for quantifying shear flow, uncertainty near boundaries and low resolution remain severe restrictions. Additionally, shear stress determination is particularly challenging in biofluids due to their significant non-Newtonian behaviors. The present study develops a shearmetry technique in physiological settings using a biomimetic fluid containing rare earth-doped luminescent nanorods acting in two roles. First, they are used as colloidal additives adjusting rheological properties in physiological media. Their anisotropic morphology and interparticle interaction synergistically induce a non-Newtonian shear-thinning effect emulating real biofluids. Second, they can probe shear stress due to the shear-induced alignment. The polarized luminescence of the nanorods allows for quantifying their orientational order parameter and thus correlated shear stress. Using scanning confocal microscopy, we demonstrate the tomographic mapping of the shear stress distribution in microfluidics. High shear stress is evident near the constriction and the cellular periphery, in which non-Newtonian effects can have a significant impact. This emerging shearmetry technique is promising for implementation in physiological and rheological environments of biofluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Unraveling Interdiffusion Phenomena and the Role of Nanoscale Diffusion Barriers in the Copper–Gold System Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles Ionic Potential Relaxation Effect in a Hydrogel Enabling Synapse-Like Information Processing Constructing the Enamel-Like Dentin Adhesion Interface to Achieve Durable Resin–Dentin Adhesion Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1