Ran He , Qinghui Zhang , Yuanyuan Hu , Haijiao Xie , ChaoYang Li , Zhenhua Yan , Kai Yang , Kuirong Deng
{"title":"部分牺牲型混合稀释剂调节电解质促进宽温锂金属电池的发展","authors":"Ran He , Qinghui Zhang , Yuanyuan Hu , Haijiao Xie , ChaoYang Li , Zhenhua Yan , Kai Yang , Kuirong Deng","doi":"10.1016/j.ensm.2024.103836","DOIUrl":null,"url":null,"abstract":"<div><div>Designing electrolytes with superior interface compatibility for high-voltage and wide-temperature Li metal batteries (LMBs) is still challenging. Herein, a partially sacrificial hybrid diluent consisting of minor active diluent 1,3,5-trifluorobenzene (TFB) and main inert diluent fluorobenzene (FB) is proposed to regulate tetramethylene sulfone (TMS)-based localized high-concentration electrolyte (LHCE-FB-TFB) to tune the chemical activity at the electrolyte/electrode interfaces. The prior sacrificial decomposition of TFB with high LiF yielding activity cooperates with bis(fluorosulfonyl)imide (FSI<sup>−</sup>) anions to construct thin and durable LiF-rich solid-electrolyte interphases (SEIs) and cathode electrolyte interphases (CEIs), dramatically enhancing interface stability of Li metal anodes and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes in a wide temperature range. Relatively inert low-viscosity FB exhibits powerful dilution effect, and endows the electrolyte with low viscosity and high ionic kinetics at low temperature, wide liquid range (−75∼60 °C), and favorable wettability. Li metal anodes with LHCE-FB-TFB achieve extremely stable and high-efficiency (99.3 %) cycles. LHCE-FB-TFB enables NCM811||Li cells with superior cycle performance under harsh conditions, including high voltage (4.5 V), wide temperature range from −20 °C to 60 °C, high areal capacity (3.6 mAh cm<sup>−2</sup>) and thin Li metal anode (50 μm). This work provides a promising strategy for the design of high-efficiency electrolytes for wide-temperature batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103836"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially sacrificial hybrid diluent regulated electrolytes boosting wide-temperature Li metal batteries\",\"authors\":\"Ran He , Qinghui Zhang , Yuanyuan Hu , Haijiao Xie , ChaoYang Li , Zhenhua Yan , Kai Yang , Kuirong Deng\",\"doi\":\"10.1016/j.ensm.2024.103836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing electrolytes with superior interface compatibility for high-voltage and wide-temperature Li metal batteries (LMBs) is still challenging. Herein, a partially sacrificial hybrid diluent consisting of minor active diluent 1,3,5-trifluorobenzene (TFB) and main inert diluent fluorobenzene (FB) is proposed to regulate tetramethylene sulfone (TMS)-based localized high-concentration electrolyte (LHCE-FB-TFB) to tune the chemical activity at the electrolyte/electrode interfaces. The prior sacrificial decomposition of TFB with high LiF yielding activity cooperates with bis(fluorosulfonyl)imide (FSI<sup>−</sup>) anions to construct thin and durable LiF-rich solid-electrolyte interphases (SEIs) and cathode electrolyte interphases (CEIs), dramatically enhancing interface stability of Li metal anodes and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes in a wide temperature range. Relatively inert low-viscosity FB exhibits powerful dilution effect, and endows the electrolyte with low viscosity and high ionic kinetics at low temperature, wide liquid range (−75∼60 °C), and favorable wettability. Li metal anodes with LHCE-FB-TFB achieve extremely stable and high-efficiency (99.3 %) cycles. LHCE-FB-TFB enables NCM811||Li cells with superior cycle performance under harsh conditions, including high voltage (4.5 V), wide temperature range from −20 °C to 60 °C, high areal capacity (3.6 mAh cm<sup>−2</sup>) and thin Li metal anode (50 μm). This work provides a promising strategy for the design of high-efficiency electrolytes for wide-temperature batteries.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103836\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006627\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006627","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Partially sacrificial hybrid diluent regulated electrolytes boosting wide-temperature Li metal batteries
Designing electrolytes with superior interface compatibility for high-voltage and wide-temperature Li metal batteries (LMBs) is still challenging. Herein, a partially sacrificial hybrid diluent consisting of minor active diluent 1,3,5-trifluorobenzene (TFB) and main inert diluent fluorobenzene (FB) is proposed to regulate tetramethylene sulfone (TMS)-based localized high-concentration electrolyte (LHCE-FB-TFB) to tune the chemical activity at the electrolyte/electrode interfaces. The prior sacrificial decomposition of TFB with high LiF yielding activity cooperates with bis(fluorosulfonyl)imide (FSI−) anions to construct thin and durable LiF-rich solid-electrolyte interphases (SEIs) and cathode electrolyte interphases (CEIs), dramatically enhancing interface stability of Li metal anodes and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes in a wide temperature range. Relatively inert low-viscosity FB exhibits powerful dilution effect, and endows the electrolyte with low viscosity and high ionic kinetics at low temperature, wide liquid range (−75∼60 °C), and favorable wettability. Li metal anodes with LHCE-FB-TFB achieve extremely stable and high-efficiency (99.3 %) cycles. LHCE-FB-TFB enables NCM811||Li cells with superior cycle performance under harsh conditions, including high voltage (4.5 V), wide temperature range from −20 °C to 60 °C, high areal capacity (3.6 mAh cm−2) and thin Li metal anode (50 μm). This work provides a promising strategy for the design of high-efficiency electrolytes for wide-temperature batteries.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.