基于强化学习的在线多风力涡轮机协同偏航控制的有效性

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-10-15 DOI:10.1016/j.conengprac.2024.106124
Longyan Wang , Qiang Dong , Yanxia Fu , Bowen Zhang , Meng Chen , Junhang Xie , Jian Xu , Zhaohui Luo
{"title":"基于强化学习的在线多风力涡轮机协同偏航控制的有效性","authors":"Longyan Wang ,&nbsp;Qiang Dong ,&nbsp;Yanxia Fu ,&nbsp;Bowen Zhang ,&nbsp;Meng Chen ,&nbsp;Junhang Xie ,&nbsp;Jian Xu ,&nbsp;Zhaohui Luo","doi":"10.1016/j.conengprac.2024.106124","DOIUrl":null,"url":null,"abstract":"<div><div>Wind farm wake interactions are critical determinants of overall power generation efficiency. To address these challenges, coordinated yaw control of turbines has emerged as a highly effective strategy. While conventional approaches have been widely adopted, the application of contemporary machine learning techniques, specifically reinforcement learning (RL), holds great promise for optimizing wind farm control performance. Considering the scarcity of comparative analyses for yaw control approaches, this study implements and evaluates classical greedy, optimization-based, and RL policies for in-line multiple wind turbine under various wind scenario by an experimentally validated analytical wake model. The results unambiguously establish the superiority of RL over greedy control, particularly below rated wind speeds, as RL optimizes yaw trajectories to maximize total power capture. Furthermore, the RL-controlled policy operates without being hampered by iterative modeling errors, leading to a higher cumulative power generation compared to the optimized control scheme during the control process. At lower wind speeds (5 m/s), it achieves a remarkable 32.63 % improvement over the optimized strategy. As the wind speed increases, the advantages of RL control gradually diminish. In consequence, the model-free adaptation offered by RL control substantially bolsters robustness across a spectrum of changing wind scenarios, facilitating seamless transitions between wake steering and alignment in response to evolving wake physics. This analysis underscores the significant advantages of data-driven RL for wind farm yaw control when compared to traditional methods. Its adaptive nature empowers the optimization of total power production across a range of diverse operating regimes, all without the need for an explicit model representation.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of cooperative yaw control based on reinforcement learning for in-line multiple wind turbines\",\"authors\":\"Longyan Wang ,&nbsp;Qiang Dong ,&nbsp;Yanxia Fu ,&nbsp;Bowen Zhang ,&nbsp;Meng Chen ,&nbsp;Junhang Xie ,&nbsp;Jian Xu ,&nbsp;Zhaohui Luo\",\"doi\":\"10.1016/j.conengprac.2024.106124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wind farm wake interactions are critical determinants of overall power generation efficiency. To address these challenges, coordinated yaw control of turbines has emerged as a highly effective strategy. While conventional approaches have been widely adopted, the application of contemporary machine learning techniques, specifically reinforcement learning (RL), holds great promise for optimizing wind farm control performance. Considering the scarcity of comparative analyses for yaw control approaches, this study implements and evaluates classical greedy, optimization-based, and RL policies for in-line multiple wind turbine under various wind scenario by an experimentally validated analytical wake model. The results unambiguously establish the superiority of RL over greedy control, particularly below rated wind speeds, as RL optimizes yaw trajectories to maximize total power capture. Furthermore, the RL-controlled policy operates without being hampered by iterative modeling errors, leading to a higher cumulative power generation compared to the optimized control scheme during the control process. At lower wind speeds (5 m/s), it achieves a remarkable 32.63 % improvement over the optimized strategy. As the wind speed increases, the advantages of RL control gradually diminish. In consequence, the model-free adaptation offered by RL control substantially bolsters robustness across a spectrum of changing wind scenarios, facilitating seamless transitions between wake steering and alignment in response to evolving wake physics. This analysis underscores the significant advantages of data-driven RL for wind farm yaw control when compared to traditional methods. Its adaptive nature empowers the optimization of total power production across a range of diverse operating regimes, all without the need for an explicit model representation.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002831\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002831","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

风场尾流相互作用是决定整体发电效率的关键因素。为了应对这些挑战,涡轮机的协调偏航控制已成为一种非常有效的策略。虽然传统方法已被广泛采用,但当代机器学习技术(特别是强化学习 (RL))的应用为优化风电场控制性能带来了巨大希望。考虑到偏航控制方法的对比分析很少,本研究通过实验验证的分析唤醒模型,对各种风况下的多风力涡轮机的在线偏航控制策略进行了经典的贪婪策略、优化策略和强化学习策略的实施和评估。结果清楚地表明,RL 比贪婪控制更有优势,尤其是在额定风速以下,因为 RL 优化了偏航轨迹,使总功率捕获最大化。此外,RL 控制策略的运行不受迭代建模误差的影响,在控制过程中与优化控制方案相比,累积发电量更高。在风速较低(5 米/秒)时,它比优化策略显著提高了 32.63%。随着风速的增加,RL 控制的优势逐渐减弱。因此,RL 控制提供的无模型适应性大大增强了在各种风速变化情况下的稳健性,促进了尾流转向和对准之间的无缝转换,以应对不断变化的尾流物理特性。与传统方法相比,这项分析强调了数据驱动 RL 在风电场偏航控制方面的显著优势。其自适应性使其能够在各种不同的运行状态下优化总发电量,而无需明确的模型表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectiveness of cooperative yaw control based on reinforcement learning for in-line multiple wind turbines
Wind farm wake interactions are critical determinants of overall power generation efficiency. To address these challenges, coordinated yaw control of turbines has emerged as a highly effective strategy. While conventional approaches have been widely adopted, the application of contemporary machine learning techniques, specifically reinforcement learning (RL), holds great promise for optimizing wind farm control performance. Considering the scarcity of comparative analyses for yaw control approaches, this study implements and evaluates classical greedy, optimization-based, and RL policies for in-line multiple wind turbine under various wind scenario by an experimentally validated analytical wake model. The results unambiguously establish the superiority of RL over greedy control, particularly below rated wind speeds, as RL optimizes yaw trajectories to maximize total power capture. Furthermore, the RL-controlled policy operates without being hampered by iterative modeling errors, leading to a higher cumulative power generation compared to the optimized control scheme during the control process. At lower wind speeds (5 m/s), it achieves a remarkable 32.63 % improvement over the optimized strategy. As the wind speed increases, the advantages of RL control gradually diminish. In consequence, the model-free adaptation offered by RL control substantially bolsters robustness across a spectrum of changing wind scenarios, facilitating seamless transitions between wake steering and alignment in response to evolving wake physics. This analysis underscores the significant advantages of data-driven RL for wind farm yaw control when compared to traditional methods. Its adaptive nature empowers the optimization of total power production across a range of diverse operating regimes, all without the need for an explicit model representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
Randomized iterative feedback tuning for fast MIMO feedback design of a mechatronic system Lane-free signal-free intersection crossing via model predictive control Control design and analysis for autonomous underwater vehicles using integral quadratic constraints Time-optimal multi-point trajectory generation for robotic manipulators with continuous jerk and constant average acceleration Study of control strategy for cylinder-to-cylinder combustion homogeneity of marine medium-speed diesel engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1