富磷铟/二氧化钛界面的超快电子动力学

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-16 DOI:10.1002/adfm.202409455
Jonathan Diederich, Jennifer Velazquez Rojas, Agnieszka Paszuk, Mohammad Amin Zare Pour, Christian Höhn, Isaac Azahel Ruiz Alvarado, Klaus Schwarzburg, David Ostheimer, Rainer Eichberger, Wolf Gero Schmidt, Thomas Hannappel, Roel van de Krol, Dennis Friedrich
{"title":"富磷铟/二氧化钛界面的超快电子动力学","authors":"Jonathan Diederich, Jennifer Velazquez Rojas, Agnieszka Paszuk, Mohammad Amin Zare Pour, Christian Höhn, Isaac Azahel Ruiz Alvarado, Klaus Schwarzburg, David Ostheimer, Rainer Eichberger, Wolf Gero Schmidt, Thomas Hannappel, Roel van de Krol, Dennis Friedrich","doi":"10.1002/adfm.202409455","DOIUrl":null,"url":null,"abstract":"The current efficiency records for generating green hydrogen via solar water splitting are held by indium phosphide (InP)-based photo-absorbers, protected by TiO<sub>2</sub> layers grown through atomic layer deposition (ALD). InP is also a leading material for photonic integrated circuits and computing, where ultrafast near-surface behavior is key. A previous study described electronic pathways at the phosphorus-rich (P-rich) surface of p-doped InP(100) using time-resolved two-photon photoemission (tr-2PPE) spectroscopy. Here, the intricate electron pathways of the P-rich InP surface modified with ALD-deposited TiO<sub>2</sub> are explored. Photoexcited bulk InP electrons migrate through a bulk-to-surface transition cluster of states and surface states and inject into the TiO<sub>2</sub> conduction band (CB). Energy levels and occupation dynamics of CB states in P-rich InP and TiO<sub>2</sub> adlayers are observed, with discrete states preserved up to 10 nm TiO<sub>2</sub> deposition. Thermalization lifetimes of excited electrons &gt; 0.8 eV above the InP conduction band minimum (CBM) are preserved for layer thicknesses up to 2.5 nm. Annealing at 300 °C to achieve crystalline TiO<sub>2</sub> reconstructions destroys interfacial states, affecting charge transfer. These observations enable innovative engineering of the P-rich InP/TiO<sub>2</sub> heterointerface, opening new possibilities for studying hot-carrier extraction, adsorbate effects, surface plasmons, and improving photovoltaic and PEC water-splitting devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Electron Dynamics at the P-rich Indium Phosphide/TiO2 Interface\",\"authors\":\"Jonathan Diederich, Jennifer Velazquez Rojas, Agnieszka Paszuk, Mohammad Amin Zare Pour, Christian Höhn, Isaac Azahel Ruiz Alvarado, Klaus Schwarzburg, David Ostheimer, Rainer Eichberger, Wolf Gero Schmidt, Thomas Hannappel, Roel van de Krol, Dennis Friedrich\",\"doi\":\"10.1002/adfm.202409455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current efficiency records for generating green hydrogen via solar water splitting are held by indium phosphide (InP)-based photo-absorbers, protected by TiO<sub>2</sub> layers grown through atomic layer deposition (ALD). InP is also a leading material for photonic integrated circuits and computing, where ultrafast near-surface behavior is key. A previous study described electronic pathways at the phosphorus-rich (P-rich) surface of p-doped InP(100) using time-resolved two-photon photoemission (tr-2PPE) spectroscopy. Here, the intricate electron pathways of the P-rich InP surface modified with ALD-deposited TiO<sub>2</sub> are explored. Photoexcited bulk InP electrons migrate through a bulk-to-surface transition cluster of states and surface states and inject into the TiO<sub>2</sub> conduction band (CB). Energy levels and occupation dynamics of CB states in P-rich InP and TiO<sub>2</sub> adlayers are observed, with discrete states preserved up to 10 nm TiO<sub>2</sub> deposition. Thermalization lifetimes of excited electrons &gt; 0.8 eV above the InP conduction band minimum (CBM) are preserved for layer thicknesses up to 2.5 nm. Annealing at 300 °C to achieve crystalline TiO<sub>2</sub> reconstructions destroys interfacial states, affecting charge transfer. These observations enable innovative engineering of the P-rich InP/TiO<sub>2</sub> heterointerface, opening new possibilities for studying hot-carrier extraction, adsorbate effects, surface plasmons, and improving photovoltaic and PEC water-splitting devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202409455\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202409455","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,通过太阳能水分裂产生绿色氢气的效率记录由基于磷化铟(InP)的光吸收器保持,该吸收器由通过原子层沉积(ALD)生长的二氧化钛层保护。InP 也是光子集成电路和计算的主要材料,其中超快的近表面行为是关键。之前的一项研究利用时间分辨双光子光发射(tr-2PPE)光谱描述了掺杂 p 的 InP(100)富磷(P-rich)表面的电子路径。在此,我们探索了经 ALD 沉积 TiO2 修饰的富 P InP 表面错综复杂的电子通路。光激发的块状 InP 电子通过块状到表面的过渡态簇和表面态迁移并注入 TiO2 导带 (CB)。在富含 P 的 InP 和 TiO2 吸附层中观察到了 CB 态的能级和占据动态,离散态一直保留到 10 nm 的 TiO2 沉积。在厚度达 2.5 nm 的层中,激发电子的热化寿命比 InP 导带最小值(CBM)高出 0.8 eV。在 300 °C 下退火以实现晶体 TiO2 重构会破坏界面态,从而影响电荷转移。这些观察结果实现了富含 P 的 InP/TiO2 异质界面的创新工程,为研究热载流子萃取、吸附效应、表面等离子体以及改进光伏和 PEC 水分离器件提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrafast Electron Dynamics at the P-rich Indium Phosphide/TiO2 Interface
The current efficiency records for generating green hydrogen via solar water splitting are held by indium phosphide (InP)-based photo-absorbers, protected by TiO2 layers grown through atomic layer deposition (ALD). InP is also a leading material for photonic integrated circuits and computing, where ultrafast near-surface behavior is key. A previous study described electronic pathways at the phosphorus-rich (P-rich) surface of p-doped InP(100) using time-resolved two-photon photoemission (tr-2PPE) spectroscopy. Here, the intricate electron pathways of the P-rich InP surface modified with ALD-deposited TiO2 are explored. Photoexcited bulk InP electrons migrate through a bulk-to-surface transition cluster of states and surface states and inject into the TiO2 conduction band (CB). Energy levels and occupation dynamics of CB states in P-rich InP and TiO2 adlayers are observed, with discrete states preserved up to 10 nm TiO2 deposition. Thermalization lifetimes of excited electrons > 0.8 eV above the InP conduction band minimum (CBM) are preserved for layer thicknesses up to 2.5 nm. Annealing at 300 °C to achieve crystalline TiO2 reconstructions destroys interfacial states, affecting charge transfer. These observations enable innovative engineering of the P-rich InP/TiO2 heterointerface, opening new possibilities for studying hot-carrier extraction, adsorbate effects, surface plasmons, and improving photovoltaic and PEC water-splitting devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Mutually Activated 2D Ti0.87O2/MXene Monolayers Through Electronic Compensation Effect as Highly Efficient Cathode Catalysts of Li–O2 Batteries Circularly Polarized Organic Ultralong Room-Temperature Phosphorescence: Generation, Enhancement, and Application Engineered Multifunctional BioHJzyme via Tuning D-Band Center for Postoperative Infected Wound Regeneration of Tumor Resection Functionalized Modification of Conjugated Porous Polymers for Full Reaction Photosynthesis of H2O2 Ultrafast Electron Dynamics at the P-rich Indium Phosphide/TiO2 Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1