通过二磺化配体螯合实现高稳定性碱性全铁氧化还原流动电池

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-16 DOI:10.1002/aenm.202402227
Hua Jiang, Wendong Yang, Pei Liu, Linfeng Wang, Jintao Meng, Shuangyan Gui, Xue Long, Xuan Cai, Yilin Zeng, Yifan Zhang, Jinhua Guo, Jun Wang, Jun Zhou, Jiangjiang Duan
{"title":"通过二磺化配体螯合实现高稳定性碱性全铁氧化还原流动电池","authors":"Hua Jiang, Wendong Yang, Pei Liu, Linfeng Wang, Jintao Meng, Shuangyan Gui, Xue Long, Xuan Cai, Yilin Zeng, Yifan Zhang, Jinhua Guo, Jun Wang, Jun Zhou, Jiangjiang Duan","doi":"10.1002/aenm.202402227","DOIUrl":null,"url":null,"abstract":"Alkaline all-iron flow batteries possess intrinsic safety and low cost, demonstrating great potential for large-scale and long-duration energy storage. However, their commercial application is hindered by the issue of capacity decay resulting from the decomposition of iron complexes and ligand crossovers. In this paper, an robust anolyte Fe(TEA-2S) is reported, which is formed by chelating iron ions with the sulfonate-enriched ligand (TEA-2S) in alkaline environment. By skillfully designing the ligands, the binding energy of the iron complexes increases and ligand crossovers are suppressed, making the iron complexes highly stable in the charge–discharge cycles. Alkaline all-iron flow batteries coupling with Fe(TEA-2S) and the typical iron-cyanide catholyte perform a minimal capacity decay rate (0.17% per day and 0.0014% per cycle), maintaining an average coulombic efficiency of close to 99.93% over 2000 cycles along with a high energy efficiency of 83.5% at a current density of 80 mA cm<sup>−2</sup>. In addition, Fe(TEA-2S) exhibits high solubility of up to 1.85 м (with a theoretical capacity of up to 49.58 Ah L<sup>−1</sup>), even at low temperatures as extreme as −30 °C. This work demonstrates a promising pathway toward achieving long-duration and large-scale energy storage.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Stable Alkaline All-Iron Redox Flow Batteries Enabled by Disulfonated Ligands Chelation\",\"authors\":\"Hua Jiang, Wendong Yang, Pei Liu, Linfeng Wang, Jintao Meng, Shuangyan Gui, Xue Long, Xuan Cai, Yilin Zeng, Yifan Zhang, Jinhua Guo, Jun Wang, Jun Zhou, Jiangjiang Duan\",\"doi\":\"10.1002/aenm.202402227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alkaline all-iron flow batteries possess intrinsic safety and low cost, demonstrating great potential for large-scale and long-duration energy storage. However, their commercial application is hindered by the issue of capacity decay resulting from the decomposition of iron complexes and ligand crossovers. In this paper, an robust anolyte Fe(TEA-2S) is reported, which is formed by chelating iron ions with the sulfonate-enriched ligand (TEA-2S) in alkaline environment. By skillfully designing the ligands, the binding energy of the iron complexes increases and ligand crossovers are suppressed, making the iron complexes highly stable in the charge–discharge cycles. Alkaline all-iron flow batteries coupling with Fe(TEA-2S) and the typical iron-cyanide catholyte perform a minimal capacity decay rate (0.17% per day and 0.0014% per cycle), maintaining an average coulombic efficiency of close to 99.93% over 2000 cycles along with a high energy efficiency of 83.5% at a current density of 80 mA cm<sup>−2</sup>. In addition, Fe(TEA-2S) exhibits high solubility of up to 1.85 м (with a theoretical capacity of up to 49.58 Ah L<sup>−1</sup>), even at low temperatures as extreme as −30 °C. This work demonstrates a promising pathway toward achieving long-duration and large-scale energy storage.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202402227\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402227","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Stable Alkaline All-Iron Redox Flow Batteries Enabled by Disulfonated Ligands Chelation
Alkaline all-iron flow batteries possess intrinsic safety and low cost, demonstrating great potential for large-scale and long-duration energy storage. However, their commercial application is hindered by the issue of capacity decay resulting from the decomposition of iron complexes and ligand crossovers. In this paper, an robust anolyte Fe(TEA-2S) is reported, which is formed by chelating iron ions with the sulfonate-enriched ligand (TEA-2S) in alkaline environment. By skillfully designing the ligands, the binding energy of the iron complexes increases and ligand crossovers are suppressed, making the iron complexes highly stable in the charge–discharge cycles. Alkaline all-iron flow batteries coupling with Fe(TEA-2S) and the typical iron-cyanide catholyte perform a minimal capacity decay rate (0.17% per day and 0.0014% per cycle), maintaining an average coulombic efficiency of close to 99.93% over 2000 cycles along with a high energy efficiency of 83.5% at a current density of 80 mA cm−2. In addition, Fe(TEA-2S) exhibits high solubility of up to 1.85 м (with a theoretical capacity of up to 49.58 Ah L−1), even at low temperatures as extreme as −30 °C. This work demonstrates a promising pathway toward achieving long-duration and large-scale energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Synergistic Reduction and Oxidation Resistant Interface Modifier for High-Voltage and High-Loading Solid-State Lithium Batteries Highly Stable Alkaline All-Iron Redox Flow Batteries Enabled by Disulfonated Ligands Chelation A Revised High-Throughput Screening Model on Oxygen Reduction Reaction Over Dual Atom Catalysts Based on the Axial Pre-Adsorption and O2 Adsorption Charge Separation Induced by Asymmetric Surface Charge Effects in Quasi-Solid State Electrolyte for Sustainable Anion Storage Cross-Scale Process Intensification of Spindle CuO Supported Tungsten Single-Atom Catalysts toward Enhanced Electrochemical Hydrogen Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1