利用机器学习提高 ECMWF 全球波高预报的准确性

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-10-09 DOI:10.1016/j.ocemod.2024.102450
Shuyi Zhou , Jiuke Wang , Yuhan Cao , Brandon J. Bethel , Wenhong Xie , Guangjun Xu , Wenjin Sun , Yang Yu , Hongchun Zhang , Changming Dong
{"title":"利用机器学习提高 ECMWF 全球波高预报的准确性","authors":"Shuyi Zhou ,&nbsp;Jiuke Wang ,&nbsp;Yuhan Cao ,&nbsp;Brandon J. Bethel ,&nbsp;Wenhong Xie ,&nbsp;Guangjun Xu ,&nbsp;Wenjin Sun ,&nbsp;Yang Yu ,&nbsp;Hongchun Zhang ,&nbsp;Changming Dong","doi":"10.1016/j.ocemod.2024.102450","DOIUrl":null,"url":null,"abstract":"<div><div>Significant wave height (SWH) stands as one of the most crucial parameters for maritime activities. However, even the SWH data from the widely utilized European Centre for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF-IFS) carries errors and uncertainties. In this study, the Light Gradient Boosting Machine (LightGBM) is used to inference the global ECMWF-IFS SWH forecast biases. The results demonstrate that globally, the LightGBM reduces the root mean square error by 10–20 %. Particularly noteworthy is the enhanced forecast accuracy observed in the western Pacific during late summers. Furthermore, the corrected forecast results during Super Typhoon Lekima in 2019 showcase the capability of model to effectively enhance the forecast accuracy of typhoon-induced wind waves, even when four typhoons occur concurrently. This study establishes the feasibility of LightGBM in inferencing single-step SWH forecast bias and presents a cost-effective model for enhancing global wave forecasts.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102450"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the accuracy of global ECMWF wave height forecasts with machine learning\",\"authors\":\"Shuyi Zhou ,&nbsp;Jiuke Wang ,&nbsp;Yuhan Cao ,&nbsp;Brandon J. Bethel ,&nbsp;Wenhong Xie ,&nbsp;Guangjun Xu ,&nbsp;Wenjin Sun ,&nbsp;Yang Yu ,&nbsp;Hongchun Zhang ,&nbsp;Changming Dong\",\"doi\":\"10.1016/j.ocemod.2024.102450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Significant wave height (SWH) stands as one of the most crucial parameters for maritime activities. However, even the SWH data from the widely utilized European Centre for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF-IFS) carries errors and uncertainties. In this study, the Light Gradient Boosting Machine (LightGBM) is used to inference the global ECMWF-IFS SWH forecast biases. The results demonstrate that globally, the LightGBM reduces the root mean square error by 10–20 %. Particularly noteworthy is the enhanced forecast accuracy observed in the western Pacific during late summers. Furthermore, the corrected forecast results during Super Typhoon Lekima in 2019 showcase the capability of model to effectively enhance the forecast accuracy of typhoon-induced wind waves, even when four typhoons occur concurrently. This study establishes the feasibility of LightGBM in inferencing single-step SWH forecast bias and presents a cost-effective model for enhancing global wave forecasts.</div></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"192 \",\"pages\":\"Article 102450\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324001379\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001379","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

显著波高(SWH)是海上活动最关键的参数之一。然而,即使是广泛使用的欧洲中期天气预报中心综合预报系统(ECMWF-IFS)提供的 SWH 数据也存在误差和不确定性。本研究采用光梯度提升机(LightGBM)推断 ECMWF-IFS SWH 全球预报偏差。结果表明,在全球范围内,LightGBM 可将均方根误差降低 10-20%。尤其值得注意的是,在夏末西太平洋观测到的预报精度有所提高。此外,2019 年超强台风 "勒基马 "期间的修正预报结果表明,即使在四个台风同时出现的情况下,模型也能有效提高台风诱发风浪的预报精度。本研究证实了 LightGBM 在推断单步 SWH 预报偏差方面的可行性,并提出了一种用于增强全球海浪预报的经济有效的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the accuracy of global ECMWF wave height forecasts with machine learning
Significant wave height (SWH) stands as one of the most crucial parameters for maritime activities. However, even the SWH data from the widely utilized European Centre for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF-IFS) carries errors and uncertainties. In this study, the Light Gradient Boosting Machine (LightGBM) is used to inference the global ECMWF-IFS SWH forecast biases. The results demonstrate that globally, the LightGBM reduces the root mean square error by 10–20 %. Particularly noteworthy is the enhanced forecast accuracy observed in the western Pacific during late summers. Furthermore, the corrected forecast results during Super Typhoon Lekima in 2019 showcase the capability of model to effectively enhance the forecast accuracy of typhoon-induced wind waves, even when four typhoons occur concurrently. This study establishes the feasibility of LightGBM in inferencing single-step SWH forecast bias and presents a cost-effective model for enhancing global wave forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
Low power computation of transoceanic wave propagation for tsunami hazard mitigation Discrete variance decay analysis of spurious mixing Global tsunami modelling on a spherical multiple-cell grid Accuracy assessment of recent global ocean tide models in coastal waters of the European North West Shelf Enhancing model temperature estimations in shallow, turbid, coastal regions: Mobile Bay, Alabama
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1