{"title":"多维纳米颗粒三元碳酸盐相变材料热物理性质的实验增强研究","authors":"Meiyang Xu, Gaosheng Wei, Chao Huang, Xiaoze Du","doi":"10.1016/j.solmat.2024.113222","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonates have great application potential as heat transfer and thermal energy storage media in the development of future phase change materials. This paper gives thermophysical properties enhancement study on ternary carbonates in liquid state by adding aluminum oxide nanoparticles, multi-walled carbon nanotubes, graphene nanosheets, and experimentally evaluate the performance strengthen ability of multi-dimensional nanoparticles. The thermal diffusivities and specific heats of the prepared samples by the water solution method are determined using the laser flash technique and the differential scanning calorimetry at liquid state, respectively. A thermogravimetric analyzer is deployed for evaluate the high-temperature thermal stability of the composite ternary carbonates. Scanning electron microscopy and Fourier transform infrared spectroscopy techniques are utilized to examine the surface morphologies and chemical structures of the samples. The results indicate that there is a cooperative reinforcement impact on the thermophysical properties of ternary carbonate by utilizing zero-dimensional Al<sub>2</sub>O<sub>3</sub> nanoparticles and two-dimensional graphene nanosheets, with a maximum improvement of 56.7 % for thermal conductivity, and 10.3 % for specific heat, which is apparently larger than adding any single nanoparticle. The composites exhibit superior thermal cycling stability after low-high temperature experiment, and samples can maintain thermal stability until 700 °C in the thermogravimetric analysis.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113222"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental enhancement study of thermophysical properties of ternary carbonate phase change material with multi-dimensional nanoparticles\",\"authors\":\"Meiyang Xu, Gaosheng Wei, Chao Huang, Xiaoze Du\",\"doi\":\"10.1016/j.solmat.2024.113222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbonates have great application potential as heat transfer and thermal energy storage media in the development of future phase change materials. This paper gives thermophysical properties enhancement study on ternary carbonates in liquid state by adding aluminum oxide nanoparticles, multi-walled carbon nanotubes, graphene nanosheets, and experimentally evaluate the performance strengthen ability of multi-dimensional nanoparticles. The thermal diffusivities and specific heats of the prepared samples by the water solution method are determined using the laser flash technique and the differential scanning calorimetry at liquid state, respectively. A thermogravimetric analyzer is deployed for evaluate the high-temperature thermal stability of the composite ternary carbonates. Scanning electron microscopy and Fourier transform infrared spectroscopy techniques are utilized to examine the surface morphologies and chemical structures of the samples. The results indicate that there is a cooperative reinforcement impact on the thermophysical properties of ternary carbonate by utilizing zero-dimensional Al<sub>2</sub>O<sub>3</sub> nanoparticles and two-dimensional graphene nanosheets, with a maximum improvement of 56.7 % for thermal conductivity, and 10.3 % for specific heat, which is apparently larger than adding any single nanoparticle. The composites exhibit superior thermal cycling stability after low-high temperature experiment, and samples can maintain thermal stability until 700 °C in the thermogravimetric analysis.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113222\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005348\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental enhancement study of thermophysical properties of ternary carbonate phase change material with multi-dimensional nanoparticles
Carbonates have great application potential as heat transfer and thermal energy storage media in the development of future phase change materials. This paper gives thermophysical properties enhancement study on ternary carbonates in liquid state by adding aluminum oxide nanoparticles, multi-walled carbon nanotubes, graphene nanosheets, and experimentally evaluate the performance strengthen ability of multi-dimensional nanoparticles. The thermal diffusivities and specific heats of the prepared samples by the water solution method are determined using the laser flash technique and the differential scanning calorimetry at liquid state, respectively. A thermogravimetric analyzer is deployed for evaluate the high-temperature thermal stability of the composite ternary carbonates. Scanning electron microscopy and Fourier transform infrared spectroscopy techniques are utilized to examine the surface morphologies and chemical structures of the samples. The results indicate that there is a cooperative reinforcement impact on the thermophysical properties of ternary carbonate by utilizing zero-dimensional Al2O3 nanoparticles and two-dimensional graphene nanosheets, with a maximum improvement of 56.7 % for thermal conductivity, and 10.3 % for specific heat, which is apparently larger than adding any single nanoparticle. The composites exhibit superior thermal cycling stability after low-high temperature experiment, and samples can maintain thermal stability until 700 °C in the thermogravimetric analysis.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.