隧道隔离层变形模式及盾构隧道地震响应研究

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2024-10-17 DOI:10.1016/j.soildyn.2024.108998
Jiahui Lu , Junjie Luo , Xiangyun Huang , Junliang Hong , Yi Lu , Fulin Zhou
{"title":"隧道隔离层变形模式及盾构隧道地震响应研究","authors":"Jiahui Lu ,&nbsp;Junjie Luo ,&nbsp;Xiangyun Huang ,&nbsp;Junliang Hong ,&nbsp;Yi Lu ,&nbsp;Fulin Zhou","doi":"10.1016/j.soildyn.2024.108998","DOIUrl":null,"url":null,"abstract":"<div><div>Tunnel seismic isolation is an effective measure to reduce the seismic response of tunnels; however, the unclear mechanism limits the popularization and application of this measure. In this study, the deformation patterns of tunnel seismic isolation were investigated using theoretical analyses and shaking-table experiments. The analytical solution for the dynamic response of the seismic isolation tunnel under SH-wave incidence was derived using the wave-function expansion method. A novel loading device based on the reaction-displacement method was used to study the mechanism of the tunnel seismic isolation layer. It was found that the seismic isolation layer helped reduce and spread the deformation from the outer surface to the inner surface, effectively minimizing the deformation affecting the lining. The DSCF response of the lining is subsequently reduced. Moreover, the installation of seismic isolation did not result in a significant alteration in the acceleration response of the tunnel. These results provide a reference for the seismic isolation design of tunnels.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"187 ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on deformation patterns of tunnel isolation layers and seismic response of a shield tunnel\",\"authors\":\"Jiahui Lu ,&nbsp;Junjie Luo ,&nbsp;Xiangyun Huang ,&nbsp;Junliang Hong ,&nbsp;Yi Lu ,&nbsp;Fulin Zhou\",\"doi\":\"10.1016/j.soildyn.2024.108998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tunnel seismic isolation is an effective measure to reduce the seismic response of tunnels; however, the unclear mechanism limits the popularization and application of this measure. In this study, the deformation patterns of tunnel seismic isolation were investigated using theoretical analyses and shaking-table experiments. The analytical solution for the dynamic response of the seismic isolation tunnel under SH-wave incidence was derived using the wave-function expansion method. A novel loading device based on the reaction-displacement method was used to study the mechanism of the tunnel seismic isolation layer. It was found that the seismic isolation layer helped reduce and spread the deformation from the outer surface to the inner surface, effectively minimizing the deformation affecting the lining. The DSCF response of the lining is subsequently reduced. Moreover, the installation of seismic isolation did not result in a significant alteration in the acceleration response of the tunnel. These results provide a reference for the seismic isolation design of tunnels.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"187 \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124005505\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124005505","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

隧道隔震是降低隧道地震反应的有效措施,但由于其机理不清,限制了该措施的推广和应用。本研究利用理论分析和振动台实验研究了隧道隔震的变形模式。利用波函数展开法得出了隔震隧道在 SH 波入射下的动态响应解析解。利用基于反作用位移法的新型加载装置研究了隧道隔震层的机理。研究发现,隔震层有助于减少和分散从外表面到内表面的变形,从而有效地将影响衬砌的变形降到最低。衬砌的 DSCF 反应随之减小。此外,隔震层的安装并未导致隧道加速度响应的显著改变。这些结果为隧道的隔震设计提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on deformation patterns of tunnel isolation layers and seismic response of a shield tunnel
Tunnel seismic isolation is an effective measure to reduce the seismic response of tunnels; however, the unclear mechanism limits the popularization and application of this measure. In this study, the deformation patterns of tunnel seismic isolation were investigated using theoretical analyses and shaking-table experiments. The analytical solution for the dynamic response of the seismic isolation tunnel under SH-wave incidence was derived using the wave-function expansion method. A novel loading device based on the reaction-displacement method was used to study the mechanism of the tunnel seismic isolation layer. It was found that the seismic isolation layer helped reduce and spread the deformation from the outer surface to the inner surface, effectively minimizing the deformation affecting the lining. The DSCF response of the lining is subsequently reduced. Moreover, the installation of seismic isolation did not result in a significant alteration in the acceleration response of the tunnel. These results provide a reference for the seismic isolation design of tunnels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Dynamic response analysis of monopile-supported offshore wind turbine on sandy ground under seismic and environmental loads Quantification of energy-dissipating capacity for self-centering shear walls considering variable loading sequences Combining physical model with neural networks for earthquake site response prediction Simplified design approach of a negative stiffness-based seismic base absorber via multi-objective optimization Optimal design and numerical studies of negative stiffness device–TMD controlled systems using PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1