{"title":"深度时间神经网络:解决高维 PDE 的高效方法","authors":"Ahmad Aghapour , Hamid Arian , Luis Seco","doi":"10.1016/j.amc.2024.129117","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-time neural networks: An efficient approach for solving high-dimensional PDEs\",\"authors\":\"Ahmad Aghapour , Hamid Arian , Luis Seco\",\"doi\":\"10.1016/j.amc.2024.129117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005782\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005782","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep-time neural networks: An efficient approach for solving high-dimensional PDEs
This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.