Yaolong Yu , Zhengtian Wu , Baoping Jiang , Huaicheng Yan , Yichen Lu
{"title":"通过对数下降方向算法解决最小凹成本供应问题的拉格朗日障碍法","authors":"Yaolong Yu , Zhengtian Wu , Baoping Jiang , Huaicheng Yan , Yichen Lu","doi":"10.1016/j.amc.2024.129114","DOIUrl":null,"url":null,"abstract":"<div><div>The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrange barrier approach for the minimum concave cost supply problem via a logarithmic descent direction algorithm\",\"authors\":\"Yaolong Yu , Zhengtian Wu , Baoping Jiang , Huaicheng Yan , Yichen Lu\",\"doi\":\"10.1016/j.amc.2024.129114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005757\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Lagrange barrier approach for the minimum concave cost supply problem via a logarithmic descent direction algorithm
The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.