{"title":"评估预测气候变化下森林生态系统服务的生态复杂性和不确定性","authors":"","doi":"10.1016/j.ecocom.2024.101106","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change affects Central European forest ecosystems in different ways and, consequently, these changes result in different feedbacks on the provision of forest ecosystem services. Regarding the complexity and the variability in climate-forest interactions outcome, forest decision makers necessitate reliable information about changes in the forest ecosystem services for planning and adaptation purposes. However, forest productivity predictions incorporate multiple levels of uncertainty that have to be regarded to ensure building realistic expectations in forest decision-making. Besides the chosen forest simulation model, uncertainties come from the climate change data represented by a set of representative concentration pathways (RCP), within the underlying ensemble of global circulation and regional climate models (GCM-RCM), and further in the treatment of the CO<sub>2</sub>-fertilization effect. We considered the mentioned uncertainties in a framework on simulating forest growth and water services for two forest sites, a Sessile oak and a Scots pine stand in Rhineland-Palatine, Germany. The framework revealed a high variability in future forest ecosystem services. Particularly, the variability among the selected GCM-RCM models within the same Representative Concentration Pathway (RCP) was higher than the variability among different RCPs (RCP2.6 and RCP8.5 representing the low and high CO<sub>2</sub>-emission scenarios, respectively). Sessile oak productivity increased under all scenarios, whereas Scots pine growth declined in the lower end of the RCP8.5 scenario. Water services remained mostly stable at both sites. Moreover, we applied a panel data model to estimate what climate indices caused changes in the forest ecosystem services. We found that Scots pine is more sensitive to a multitude of climate indices, such as temperature changes and Sessile oak showed strong response to the CO<sub>2</sub>-fertilization. We propose applying this framework to evaluate forest management options under climate change.</div></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change\",\"authors\":\"\",\"doi\":\"10.1016/j.ecocom.2024.101106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate change affects Central European forest ecosystems in different ways and, consequently, these changes result in different feedbacks on the provision of forest ecosystem services. Regarding the complexity and the variability in climate-forest interactions outcome, forest decision makers necessitate reliable information about changes in the forest ecosystem services for planning and adaptation purposes. However, forest productivity predictions incorporate multiple levels of uncertainty that have to be regarded to ensure building realistic expectations in forest decision-making. Besides the chosen forest simulation model, uncertainties come from the climate change data represented by a set of representative concentration pathways (RCP), within the underlying ensemble of global circulation and regional climate models (GCM-RCM), and further in the treatment of the CO<sub>2</sub>-fertilization effect. We considered the mentioned uncertainties in a framework on simulating forest growth and water services for two forest sites, a Sessile oak and a Scots pine stand in Rhineland-Palatine, Germany. The framework revealed a high variability in future forest ecosystem services. Particularly, the variability among the selected GCM-RCM models within the same Representative Concentration Pathway (RCP) was higher than the variability among different RCPs (RCP2.6 and RCP8.5 representing the low and high CO<sub>2</sub>-emission scenarios, respectively). Sessile oak productivity increased under all scenarios, whereas Scots pine growth declined in the lower end of the RCP8.5 scenario. Water services remained mostly stable at both sites. Moreover, we applied a panel data model to estimate what climate indices caused changes in the forest ecosystem services. We found that Scots pine is more sensitive to a multitude of climate indices, such as temperature changes and Sessile oak showed strong response to the CO<sub>2</sub>-fertilization. We propose applying this framework to evaluate forest management options under climate change.</div></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X24000345\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000345","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change
Climate change affects Central European forest ecosystems in different ways and, consequently, these changes result in different feedbacks on the provision of forest ecosystem services. Regarding the complexity and the variability in climate-forest interactions outcome, forest decision makers necessitate reliable information about changes in the forest ecosystem services for planning and adaptation purposes. However, forest productivity predictions incorporate multiple levels of uncertainty that have to be regarded to ensure building realistic expectations in forest decision-making. Besides the chosen forest simulation model, uncertainties come from the climate change data represented by a set of representative concentration pathways (RCP), within the underlying ensemble of global circulation and regional climate models (GCM-RCM), and further in the treatment of the CO2-fertilization effect. We considered the mentioned uncertainties in a framework on simulating forest growth and water services for two forest sites, a Sessile oak and a Scots pine stand in Rhineland-Palatine, Germany. The framework revealed a high variability in future forest ecosystem services. Particularly, the variability among the selected GCM-RCM models within the same Representative Concentration Pathway (RCP) was higher than the variability among different RCPs (RCP2.6 and RCP8.5 representing the low and high CO2-emission scenarios, respectively). Sessile oak productivity increased under all scenarios, whereas Scots pine growth declined in the lower end of the RCP8.5 scenario. Water services remained mostly stable at both sites. Moreover, we applied a panel data model to estimate what climate indices caused changes in the forest ecosystem services. We found that Scots pine is more sensitive to a multitude of climate indices, such as temperature changes and Sessile oak showed strong response to the CO2-fertilization. We propose applying this framework to evaluate forest management options under climate change.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity