{"title":"利用传导传热的纳米材料模拟节约能源的凝固过程","authors":"","doi":"10.1016/j.csite.2024.105248","DOIUrl":null,"url":null,"abstract":"<div><div>The current article studies the improvement of the discharging rate in cold storage systems by modifying the tank configuration and incorporating additives. Specifically, the study inspects how varying the diameter (dp) and fraction (ϕ) of nano-powders affects the process duration. The governing equations, derived under the assumption of negligible slip velocity of nanoparticles and convection terms, were solved using the Galerkin method. The computational grid was modified owing to location of the ice front, and unsteady terms were discretized using an unconditionally stable approach. The results indicate that initially, increasing dp decreases the process duration by approximately 20.01 %, but further increases in dp lead to a 49.53 % rise in the duration. As the process time increases, the amount of ice produced also increases, with nanoparticle loading resulting in a significantly higher ice yield. Specifically, the incorporation of nanoparticles enhances the storage rate by approximately 41.37 %.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of solidification for saving energy with using nanomaterial involving conduction heat transfer\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current article studies the improvement of the discharging rate in cold storage systems by modifying the tank configuration and incorporating additives. Specifically, the study inspects how varying the diameter (dp) and fraction (ϕ) of nano-powders affects the process duration. The governing equations, derived under the assumption of negligible slip velocity of nanoparticles and convection terms, were solved using the Galerkin method. The computational grid was modified owing to location of the ice front, and unsteady terms were discretized using an unconditionally stable approach. The results indicate that initially, increasing dp decreases the process duration by approximately 20.01 %, but further increases in dp lead to a 49.53 % rise in the duration. As the process time increases, the amount of ice produced also increases, with nanoparticle loading resulting in a significantly higher ice yield. Specifically, the incorporation of nanoparticles enhances the storage rate by approximately 41.37 %.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24012796\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012796","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Simulation of solidification for saving energy with using nanomaterial involving conduction heat transfer
The current article studies the improvement of the discharging rate in cold storage systems by modifying the tank configuration and incorporating additives. Specifically, the study inspects how varying the diameter (dp) and fraction (ϕ) of nano-powders affects the process duration. The governing equations, derived under the assumption of negligible slip velocity of nanoparticles and convection terms, were solved using the Galerkin method. The computational grid was modified owing to location of the ice front, and unsteady terms were discretized using an unconditionally stable approach. The results indicate that initially, increasing dp decreases the process duration by approximately 20.01 %, but further increases in dp lead to a 49.53 % rise in the duration. As the process time increases, the amount of ice produced also increases, with nanoparticle loading resulting in a significantly higher ice yield. Specifically, the incorporation of nanoparticles enhances the storage rate by approximately 41.37 %.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.