基于深度学习的代用建模方法在等离子体处理中的应用

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-10-09 DOI:10.1016/j.cherd.2024.09.031
Pengwei Liu , Qinxin Wu , Xingyu Ren , Yian Wang , Dong Ni
{"title":"基于深度学习的代用建模方法在等离子体处理中的应用","authors":"Pengwei Liu ,&nbsp;Qinxin Wu ,&nbsp;Xingyu Ren ,&nbsp;Yian Wang ,&nbsp;Dong Ni","doi":"10.1016/j.cherd.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid and accurate system evolution predictions are crucial in scientific and engineering research. However, the complexity of processing systems, involving multiple physical field couplings and slow convergence of iterative numerical algorithms, leads to low computational efficiency. Hence, this paper introduces a systematic deep-learning-based surrogate modeling methodology for multi-physics-coupled process systems with limited data and long-range time evolution, accurately predicting physics dynamics and considerably improving computational efficiency and generalization. The methodology comprises three main components: (1) generating datasets using a sequential sampling strategy, (2) modeling multi-physics spatio-temporal dynamics by designing a heterogeneous Convolutional Autoencoder and Recurrent Neural Network, and (3) training high-precision models with limited data and long-range time evolution via a dual-phase training strategy. A holistic evaluation using a 2D low-temperature plasma processing example demonstrates the methodology’s superior computational efficiency, accuracy, and generalization capabilities. It predicts plasma dynamics approximately <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> times faster than traditional numerical solvers, with a consistent 2% relative error across different generalization tasks. Furthermore, the potential for transferability across various geometries is explored, and the model’s transfer capability is demonstrated with two distinct geometric domain examples.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep-learning-based surrogate modeling method with application to plasma processing\",\"authors\":\"Pengwei Liu ,&nbsp;Qinxin Wu ,&nbsp;Xingyu Ren ,&nbsp;Yian Wang ,&nbsp;Dong Ni\",\"doi\":\"10.1016/j.cherd.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid and accurate system evolution predictions are crucial in scientific and engineering research. However, the complexity of processing systems, involving multiple physical field couplings and slow convergence of iterative numerical algorithms, leads to low computational efficiency. Hence, this paper introduces a systematic deep-learning-based surrogate modeling methodology for multi-physics-coupled process systems with limited data and long-range time evolution, accurately predicting physics dynamics and considerably improving computational efficiency and generalization. The methodology comprises three main components: (1) generating datasets using a sequential sampling strategy, (2) modeling multi-physics spatio-temporal dynamics by designing a heterogeneous Convolutional Autoencoder and Recurrent Neural Network, and (3) training high-precision models with limited data and long-range time evolution via a dual-phase training strategy. A holistic evaluation using a 2D low-temperature plasma processing example demonstrates the methodology’s superior computational efficiency, accuracy, and generalization capabilities. It predicts plasma dynamics approximately <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> times faster than traditional numerical solvers, with a consistent 2% relative error across different generalization tasks. Furthermore, the potential for transferability across various geometries is explored, and the model’s transfer capability is demonstrated with two distinct geometric domain examples.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026387622400563X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026387622400563X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

快速准确的系统演化预测对科学和工程研究至关重要。然而,由于处理系统的复杂性,涉及多个物理场耦合以及迭代数值算法收敛缓慢,导致计算效率低下。因此,本文针对数据有限和长程时间演化的多物理场耦合过程系统,介绍了一种基于深度学习的系统化代用建模方法,既能准确预测物理动态,又能大大提高计算效率和泛化能力。该方法由三个主要部分组成:(1) 使用顺序采样策略生成数据集;(2) 通过设计异构卷积自动编码器和循环神经网络建立多物理时空动态模型;(3) 通过双阶段训练策略,利用有限数据和长程时间演化训练高精度模型。利用二维低温等离子体处理实例进行的整体评估证明,该方法具有卓越的计算效率、准确性和泛化能力。它预测等离子体动力学的速度比传统数值求解器快约 105 倍,在不同的泛化任务中,相对误差始终保持在 2%。此外,该方法还探索了在各种几何结构中的迁移潜力,并通过两个不同的几何域示例证明了该模型的迁移能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep-learning-based surrogate modeling method with application to plasma processing
Rapid and accurate system evolution predictions are crucial in scientific and engineering research. However, the complexity of processing systems, involving multiple physical field couplings and slow convergence of iterative numerical algorithms, leads to low computational efficiency. Hence, this paper introduces a systematic deep-learning-based surrogate modeling methodology for multi-physics-coupled process systems with limited data and long-range time evolution, accurately predicting physics dynamics and considerably improving computational efficiency and generalization. The methodology comprises three main components: (1) generating datasets using a sequential sampling strategy, (2) modeling multi-physics spatio-temporal dynamics by designing a heterogeneous Convolutional Autoencoder and Recurrent Neural Network, and (3) training high-precision models with limited data and long-range time evolution via a dual-phase training strategy. A holistic evaluation using a 2D low-temperature plasma processing example demonstrates the methodology’s superior computational efficiency, accuracy, and generalization capabilities. It predicts plasma dynamics approximately 105 times faster than traditional numerical solvers, with a consistent 2% relative error across different generalization tasks. Furthermore, the potential for transferability across various geometries is explored, and the model’s transfer capability is demonstrated with two distinct geometric domain examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
The effect of green hydrogen feed rate variations on e-methanol synthesis by dynamic simulation A re-optimized design of mesh-type transition zone for large-scale PEM fuel cells considering two-phase flow distribution Experimental investigation in a forced draft wet cooling tower using aluminum oxide nano particles Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability Coagulative removal of polyethylene microplastics using polyaluminum chloride in conjunction with laminarin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1