Navid Erfani , Digby Symons , Conan Fee , Matthew James Watson
{"title":"拓扑优化和数值验证,改善带整体催化剂的填料床反应器的传热性能","authors":"Navid Erfani , Digby Symons , Conan Fee , Matthew James Watson","doi":"10.1016/j.cherd.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on optimizing heat transfer in packed-bed reactors by simplifying the problem to a two-dimensional steady-state heat conduction scenario. The objective is to efficiently arrange a limited volume of high-conductivity material to transport heat from the source to the low-conductivity heat-absorbing materials, representing the reacting fluid phase. The topology optimization problem is tackled using a density-based method that relies on a gradient-based algorithm. The optimized design is extruded and compared to a honeycomb internal structure using high-fidelity simulations for steam methane reforming. Results show a 6.04 % improvement in CH<sub>4</sub> conversion for the optimized structure, highlighting the potential of this method to enhance monolithic catalysts, particularly in cases where heat transfer critically influences the reaction.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 212-220"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization and numerical validation for heat transfer improvement in a packed-bed reactor with monolithic catalyst\",\"authors\":\"Navid Erfani , Digby Symons , Conan Fee , Matthew James Watson\",\"doi\":\"10.1016/j.cherd.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on optimizing heat transfer in packed-bed reactors by simplifying the problem to a two-dimensional steady-state heat conduction scenario. The objective is to efficiently arrange a limited volume of high-conductivity material to transport heat from the source to the low-conductivity heat-absorbing materials, representing the reacting fluid phase. The topology optimization problem is tackled using a density-based method that relies on a gradient-based algorithm. The optimized design is extruded and compared to a honeycomb internal structure using high-fidelity simulations for steam methane reforming. Results show a 6.04 % improvement in CH<sub>4</sub> conversion for the optimized structure, highlighting the potential of this method to enhance monolithic catalysts, particularly in cases where heat transfer critically influences the reaction.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"Pages 212-220\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005975\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005975","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Topology optimization and numerical validation for heat transfer improvement in a packed-bed reactor with monolithic catalyst
This study focuses on optimizing heat transfer in packed-bed reactors by simplifying the problem to a two-dimensional steady-state heat conduction scenario. The objective is to efficiently arrange a limited volume of high-conductivity material to transport heat from the source to the low-conductivity heat-absorbing materials, representing the reacting fluid phase. The topology optimization problem is tackled using a density-based method that relies on a gradient-based algorithm. The optimized design is extruded and compared to a honeycomb internal structure using high-fidelity simulations for steam methane reforming. Results show a 6.04 % improvement in CH4 conversion for the optimized structure, highlighting the potential of this method to enhance monolithic catalysts, particularly in cases where heat transfer critically influences the reaction.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.