{"title":"利用大规模波长/频谱和空间并行性的光网络技术","authors":"Hiroshi Hasegawa","doi":"10.1364/JOCN.532594","DOIUrl":null,"url":null,"abstract":"As DWDM transmission offers enhanced wavelength/spectrum parallelism, the capacity of optical networks has been substantially increased. Due to the theoretical capacity limit of C-band transmission over single-mode fibers, research into new frequency bands and parallel fibers has become very active. However, the hardware scale of current optical cross-connect nodes will explode with greater wavelength/spectrum and spatial parallelism. Three optical node/network architectures are presented in this paper that take advantage of one or both of these parallelism technologies. These architectures will provide a baseline for cost-effective and bandwidth-abundant future optical networks based on massive parallelism.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 11","pages":"H27-H39"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical networking that exploits massive wavelength/spectrum and spatial parallelisms\",\"authors\":\"Hiroshi Hasegawa\",\"doi\":\"10.1364/JOCN.532594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As DWDM transmission offers enhanced wavelength/spectrum parallelism, the capacity of optical networks has been substantially increased. Due to the theoretical capacity limit of C-band transmission over single-mode fibers, research into new frequency bands and parallel fibers has become very active. However, the hardware scale of current optical cross-connect nodes will explode with greater wavelength/spectrum and spatial parallelism. Three optical node/network architectures are presented in this paper that take advantage of one or both of these parallelism technologies. These architectures will provide a baseline for cost-effective and bandwidth-abundant future optical networks based on massive parallelism.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 11\",\"pages\":\"H27-H39\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720608/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720608/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
由于 DWDM 传输提供了更强的波长/频谱并行性,光网络的容量得到了大幅提高。由于单模光纤 C 波段传输的理论容量有限,对新频段和并行光纤的研究变得非常活跃。然而,随着波长/频谱和空间并行性的提高,目前光交叉连接节点的硬件规模将出现爆炸式增长。本文介绍了三种利用一种或两种并行技术的光节点/网络架构。这些架构将为未来基于大规模并行性的高成本效益和带宽充裕的光网络提供基线。
Optical networking that exploits massive wavelength/spectrum and spatial parallelisms
As DWDM transmission offers enhanced wavelength/spectrum parallelism, the capacity of optical networks has been substantially increased. Due to the theoretical capacity limit of C-band transmission over single-mode fibers, research into new frequency bands and parallel fibers has become very active. However, the hardware scale of current optical cross-connect nodes will explode with greater wavelength/spectrum and spatial parallelism. Three optical node/network architectures are presented in this paper that take advantage of one or both of these parallelism technologies. These architectures will provide a baseline for cost-effective and bandwidth-abundant future optical networks based on massive parallelism.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.