{"title":"充满氢化物单元的硼碳凝块:实现常压高温超导的途径","authors":"Ying Sun, Li Zhu","doi":"10.1038/s42005-024-01814-3","DOIUrl":null,"url":null,"abstract":"Recent advances in the search for room-temperature superconductors have focused on high-temperature superconductivity in compressed hydrides, though sustaining this at ambient pressure remains challenging. Concurrently, sp3-bonded frameworks comprising lightweight elements offer another avenue for ambient-pressure superconductors. However, their critical temperatures (Tc) still fall short of those in hydrides. Here we propose a design strategy for achieving high-temperature superconductivity at ambient pressure by integrating hydride units into B–C clathrate structures. This approach exploits the beneficial properties of hydrogen, the lightest element, to enhance superconductivity beyond that of the parent compounds. Our computational predictions indicate that doping SrB3C3 with ammonium (NH4) produces SrNH4B6C6, with an estimated Tc of 85 K at ambient pressure—over twice that of its precursor (31 K). Further substitutions yield a family of MNH4B6C6 superconductors, with PbNH4B6C6 predicted to reach a Tc of 115 K. These findings offer a promising route to high-Tc superconductors at ambient pressure. The quest for room-temperature superconductivity has been a long-standing aspiration and a central focus of research in the field of condensed matter physics. Here, the authors propose integrating hydride units into Boron-Carbon clathrate structures to achieve high-temperature superconductivity at ambient pressure.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01814-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydride units filled boron–carbon clathrate: a pathway for high-temperature superconductivity at ambient pressure\",\"authors\":\"Ying Sun, Li Zhu\",\"doi\":\"10.1038/s42005-024-01814-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the search for room-temperature superconductors have focused on high-temperature superconductivity in compressed hydrides, though sustaining this at ambient pressure remains challenging. Concurrently, sp3-bonded frameworks comprising lightweight elements offer another avenue for ambient-pressure superconductors. However, their critical temperatures (Tc) still fall short of those in hydrides. Here we propose a design strategy for achieving high-temperature superconductivity at ambient pressure by integrating hydride units into B–C clathrate structures. This approach exploits the beneficial properties of hydrogen, the lightest element, to enhance superconductivity beyond that of the parent compounds. Our computational predictions indicate that doping SrB3C3 with ammonium (NH4) produces SrNH4B6C6, with an estimated Tc of 85 K at ambient pressure—over twice that of its precursor (31 K). Further substitutions yield a family of MNH4B6C6 superconductors, with PbNH4B6C6 predicted to reach a Tc of 115 K. These findings offer a promising route to high-Tc superconductors at ambient pressure. The quest for room-temperature superconductivity has been a long-standing aspiration and a central focus of research in the field of condensed matter physics. Here, the authors propose integrating hydride units into Boron-Carbon clathrate structures to achieve high-temperature superconductivity at ambient pressure.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01814-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01814-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01814-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydride units filled boron–carbon clathrate: a pathway for high-temperature superconductivity at ambient pressure
Recent advances in the search for room-temperature superconductors have focused on high-temperature superconductivity in compressed hydrides, though sustaining this at ambient pressure remains challenging. Concurrently, sp3-bonded frameworks comprising lightweight elements offer another avenue for ambient-pressure superconductors. However, their critical temperatures (Tc) still fall short of those in hydrides. Here we propose a design strategy for achieving high-temperature superconductivity at ambient pressure by integrating hydride units into B–C clathrate structures. This approach exploits the beneficial properties of hydrogen, the lightest element, to enhance superconductivity beyond that of the parent compounds. Our computational predictions indicate that doping SrB3C3 with ammonium (NH4) produces SrNH4B6C6, with an estimated Tc of 85 K at ambient pressure—over twice that of its precursor (31 K). Further substitutions yield a family of MNH4B6C6 superconductors, with PbNH4B6C6 predicted to reach a Tc of 115 K. These findings offer a promising route to high-Tc superconductors at ambient pressure. The quest for room-temperature superconductivity has been a long-standing aspiration and a central focus of research in the field of condensed matter physics. Here, the authors propose integrating hydride units into Boron-Carbon clathrate structures to achieve high-temperature superconductivity at ambient pressure.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.