Yuhang Zhang , Yongfa Cheng , Qixiang Zhang , Wenbin He , Yongxin Wang , Yanan Ma , Gengchen Yu , Mengjie Wang , Bowen Gao , Tao Huang , Binghui Ge , Yihua Gao , Li Wen , Siliang Wang , Yang Yue
{"title":"用于 MXene 电极的超稳定低迂回度快速离子纳米通道","authors":"Yuhang Zhang , Yongfa Cheng , Qixiang Zhang , Wenbin He , Yongxin Wang , Yanan Ma , Gengchen Yu , Mengjie Wang , Bowen Gao , Tao Huang , Binghui Ge , Yihua Gao , Li Wen , Siliang Wang , Yang Yue","doi":"10.1016/j.ensm.2024.103829","DOIUrl":null,"url":null,"abstract":"<div><div>The development of flexible MXene-based electrodes with hyperstable ion nanochannels and low tortuosity, remains daunting challenging for long-term wearable electronic devices. This paper presents a hydrogen-bonding enhanced holey MXene (HC-HMXene) electrode with maximum ion accessibility, optimized ion transport pathways, and hyperstable ion nanochannels. Specifically, three roles of introducing in-plane mesopores, reducing the lateral dimensions, and increasing the interlayer spacing in HMXene film notably enhance the electrolyte permeation efficiency and shorten the ion transport paths of the electrode (resulting in a 78.7-fold decrease in tortuosity). Thus, the constructed HC-HMXene electrode exhibits 41.1 times higher diffusion coefficient and 2.3 times higher specific capacitance than those of closely restacked film electrode with the same mass loading of MXene. Furthermore, the aramid nanofibers introduced among the MXene layers as interlocking agents bond the nanosheets <em>via</em> hydrogen interaction and significantly enhance the stability of the ion channel. Consequently, the HC-HMXene film effectively resists swelling behavior and maintains good structural stability in aqueous media. Moreover, the flexible sensing integrated system, powered by a HC-HMXene-based zinc ion microcapacitor, exhibits promising application prospects in real-time monitoring human physiological characteristics.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103829"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes\",\"authors\":\"Yuhang Zhang , Yongfa Cheng , Qixiang Zhang , Wenbin He , Yongxin Wang , Yanan Ma , Gengchen Yu , Mengjie Wang , Bowen Gao , Tao Huang , Binghui Ge , Yihua Gao , Li Wen , Siliang Wang , Yang Yue\",\"doi\":\"10.1016/j.ensm.2024.103829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of flexible MXene-based electrodes with hyperstable ion nanochannels and low tortuosity, remains daunting challenging for long-term wearable electronic devices. This paper presents a hydrogen-bonding enhanced holey MXene (HC-HMXene) electrode with maximum ion accessibility, optimized ion transport pathways, and hyperstable ion nanochannels. Specifically, three roles of introducing in-plane mesopores, reducing the lateral dimensions, and increasing the interlayer spacing in HMXene film notably enhance the electrolyte permeation efficiency and shorten the ion transport paths of the electrode (resulting in a 78.7-fold decrease in tortuosity). Thus, the constructed HC-HMXene electrode exhibits 41.1 times higher diffusion coefficient and 2.3 times higher specific capacitance than those of closely restacked film electrode with the same mass loading of MXene. Furthermore, the aramid nanofibers introduced among the MXene layers as interlocking agents bond the nanosheets <em>via</em> hydrogen interaction and significantly enhance the stability of the ion channel. Consequently, the HC-HMXene film effectively resists swelling behavior and maintains good structural stability in aqueous media. Moreover, the flexible sensing integrated system, powered by a HC-HMXene-based zinc ion microcapacitor, exhibits promising application prospects in real-time monitoring human physiological characteristics.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103829\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240582972400655X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240582972400655X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes
The development of flexible MXene-based electrodes with hyperstable ion nanochannels and low tortuosity, remains daunting challenging for long-term wearable electronic devices. This paper presents a hydrogen-bonding enhanced holey MXene (HC-HMXene) electrode with maximum ion accessibility, optimized ion transport pathways, and hyperstable ion nanochannels. Specifically, three roles of introducing in-plane mesopores, reducing the lateral dimensions, and increasing the interlayer spacing in HMXene film notably enhance the electrolyte permeation efficiency and shorten the ion transport paths of the electrode (resulting in a 78.7-fold decrease in tortuosity). Thus, the constructed HC-HMXene electrode exhibits 41.1 times higher diffusion coefficient and 2.3 times higher specific capacitance than those of closely restacked film electrode with the same mass loading of MXene. Furthermore, the aramid nanofibers introduced among the MXene layers as interlocking agents bond the nanosheets via hydrogen interaction and significantly enhance the stability of the ion channel. Consequently, the HC-HMXene film effectively resists swelling behavior and maintains good structural stability in aqueous media. Moreover, the flexible sensing integrated system, powered by a HC-HMXene-based zinc ion microcapacitor, exhibits promising application prospects in real-time monitoring human physiological characteristics.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.