聚合物基药物制剂中挥发性成分的共吸附作用

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Fluid Phase Equilibria Pub Date : 2024-10-05 DOI:10.1016/j.fluid.2024.114247
Jana Kerkhoff , Dominik Borrmann , Gabriele Sadowski
{"title":"聚合物基药物制剂中挥发性成分的共吸附作用","authors":"Jana Kerkhoff ,&nbsp;Dominik Borrmann ,&nbsp;Gabriele Sadowski","doi":"10.1016/j.fluid.2024.114247","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous Solid Dispersions (ASDs) are mixtures of active pharmaceutical ingredients (APIs) and polymers aiming to increase API aqueous solubility and bioavailability. ASDs are often produced using solvent-based manufacturing, such as spray drying. Due to solubility or miscibility limitations in one solvent, solvent mixtures are frequently used for this purpose. Drying solvents or solvent mixtures from polymer-based products like ASDs is an energy-intensive and time-consuming process. Designing and optimising this drying process requires knowledge of the sorption isotherms of the solvent(s) in these polymer-based products. In this work, we developed a novel approach for measuring the simultaneous absorption/desorption of two solvents in a polymer. Combining classical dynamic vapour sorption (DVS) measurements with Raman spectroscopy, this innovative approach provides a more detailed and accurate measurement of the sorption isotherms than common methods. Moreover, we developed an approach for precisely predicting the sorption equilibria in three-component systems just based on sorption data of the corresponding binary subsystems. Our modelling approach combines the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP). Building on the description of the sorption isotherms of either water or ethanol in poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and in indomethacin (IND), we were able to quantitatively predict the simultaneous sorption of water and ethanol in PVPVA64 and the one of ethanol in an IND/PVPVA64 ASD.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114247"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-sorption of volatile components in polymer-based pharmaceutical formulations\",\"authors\":\"Jana Kerkhoff ,&nbsp;Dominik Borrmann ,&nbsp;Gabriele Sadowski\",\"doi\":\"10.1016/j.fluid.2024.114247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amorphous Solid Dispersions (ASDs) are mixtures of active pharmaceutical ingredients (APIs) and polymers aiming to increase API aqueous solubility and bioavailability. ASDs are often produced using solvent-based manufacturing, such as spray drying. Due to solubility or miscibility limitations in one solvent, solvent mixtures are frequently used for this purpose. Drying solvents or solvent mixtures from polymer-based products like ASDs is an energy-intensive and time-consuming process. Designing and optimising this drying process requires knowledge of the sorption isotherms of the solvent(s) in these polymer-based products. In this work, we developed a novel approach for measuring the simultaneous absorption/desorption of two solvents in a polymer. Combining classical dynamic vapour sorption (DVS) measurements with Raman spectroscopy, this innovative approach provides a more detailed and accurate measurement of the sorption isotherms than common methods. Moreover, we developed an approach for precisely predicting the sorption equilibria in three-component systems just based on sorption data of the corresponding binary subsystems. Our modelling approach combines the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP). Building on the description of the sorption isotherms of either water or ethanol in poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and in indomethacin (IND), we were able to quantitatively predict the simultaneous sorption of water and ethanol in PVPVA64 and the one of ethanol in an IND/PVPVA64 ASD.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"589 \",\"pages\":\"Article 114247\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838122400222X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122400222X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

无定形固体分散体(ASD)是活性药物成分(API)和聚合物的混合物,旨在提高 API 的水溶性和生物利用度。ASD 通常采用喷雾干燥等溶剂型生产工艺。由于在一种溶剂中的溶解度或混溶性受到限制,因此经常使用混合溶剂。从 ASD 等聚合物基产品中干燥溶剂或溶剂混合物是一个耗能耗时的过程。设计和优化这种干燥工艺需要了解这些聚合物基产品中溶剂的吸附等温线。在这项工作中,我们开发了一种测量聚合物中两种溶剂同时吸收/解吸的新方法。这种创新方法将经典的动态蒸汽吸附 (DVS) 测量与拉曼光谱相结合,提供了比普通方法更详细、更精确的吸附等温线测量。此外,我们还根据相应二元子系统的吸附数据,开发了一种精确预测三组分系统吸附平衡的方法。我们的建模方法结合了扰动链统计关联流体理论(PC-SAFT)和玻璃聚合物非平衡热力学(NET-GP)。基于水或乙醇在聚(乙烯基吡咯烷酮-醋酸乙烯酯)(PVPVA64)和吲哚美辛(IND)中的吸附等温线描述,我们能够定量预测水和乙醇在 PVPVA64 中的同时吸附以及乙醇在 IND/PVPVA64 ASD 中的吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-sorption of volatile components in polymer-based pharmaceutical formulations
Amorphous Solid Dispersions (ASDs) are mixtures of active pharmaceutical ingredients (APIs) and polymers aiming to increase API aqueous solubility and bioavailability. ASDs are often produced using solvent-based manufacturing, such as spray drying. Due to solubility or miscibility limitations in one solvent, solvent mixtures are frequently used for this purpose. Drying solvents or solvent mixtures from polymer-based products like ASDs is an energy-intensive and time-consuming process. Designing and optimising this drying process requires knowledge of the sorption isotherms of the solvent(s) in these polymer-based products. In this work, we developed a novel approach for measuring the simultaneous absorption/desorption of two solvents in a polymer. Combining classical dynamic vapour sorption (DVS) measurements with Raman spectroscopy, this innovative approach provides a more detailed and accurate measurement of the sorption isotherms than common methods. Moreover, we developed an approach for precisely predicting the sorption equilibria in three-component systems just based on sorption data of the corresponding binary subsystems. Our modelling approach combines the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP). Building on the description of the sorption isotherms of either water or ethanol in poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and in indomethacin (IND), we were able to quantitatively predict the simultaneous sorption of water and ethanol in PVPVA64 and the one of ethanol in an IND/PVPVA64 ASD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
期刊最新文献
Prediction of melting and solid phase transitions temperatures and enthalpies for triacylglycerols using artificial neural networks The influence of pure compounds’ parameters on the phase behaviour of carbon dioxide + 1-hexanol binary system Experimental data and thermodynamic modeling for n-propane + Brazil nut oil at high pressures Development of a new parameterization strategy and GC parameters of halogenated hydrocarbons for PC-SAFT equation of state Phase equilibrium calculations with specified vapor fraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1