在基于光 IRS 和无人机辅助 FSO 的网络中利用动态资源分配缓解反应性干扰

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Physical Communication Pub Date : 2024-10-10 DOI:10.1016/j.phycom.2024.102520
Priyanka Singh , Haythem Bany Salameh , Vivek Ashok Bohara , Anand Srivastava , Moussa Ayyash
{"title":"在基于光 IRS 和无人机辅助 FSO 的网络中利用动态资源分配缓解反应性干扰","authors":"Priyanka Singh ,&nbsp;Haythem Bany Salameh ,&nbsp;Vivek Ashok Bohara ,&nbsp;Anand Srivastava ,&nbsp;Moussa Ayyash","doi":"10.1016/j.phycom.2024.102520","DOIUrl":null,"url":null,"abstract":"<div><div>Free space optics (FSO) offers a promising opportunity to enhance next-generation network’s capacity with its unlicensed spectrum and wide bandwidth. However, jamming attacks, coupled with inherent anomalies in the FSO-based channel, threaten the performance of these networks. This is especially problematic for security-sensitive applications that demand a resilient communication infrastructure. To address this issue, optical intelligent reflecting surfaces (IRS) and unmanned aerial vehicles (UAVs) can provide promising solutions. This work introduces an efficient approach for mirror element assignment in UAV-assisted FSO-based networks, aimed at mitigating reactive jamming attacks while satisfying users’ quality-of-service (QoS) requirements. To ensure network reliability, we formulate an optimization problem that enhances overall network performance by simultaneously allocating resources such as mirror elements with awareness of jamming attacks. The formulated optimization problem is a binary linear programming problem, which is generally NP-hard. To address this, we introduce a batch-based sequential fixing linear programming procedure called the Reactive Jamming-Aware Mirror Element Allocation (RJA-MEA) scheme. This scheme optimally assigns mirror elements to satisfy the users’ rate demands. In this paper, the performance of the RJA-MEA scheme is compared with reference schemes such as Reactive Jamming Unaware-Mirror Element Allocation (RJU-MEA), Reactive Jamming-Aware Equal Mirror Element Allocation (RJA-EMEA), and Reactive Jamming Unaware-Equal Mirror Element Allocation (RJU-EMEA) schemes. The simulation results reveal that the proposed RJA-MEA scheme surpasses existing reference schemes, thereby significantly improving the overall network sumrate performance.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102520"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On mitigating reactive jamming with dynamic resource allocation in optical IRS and UAV-assisted FSO-based networks\",\"authors\":\"Priyanka Singh ,&nbsp;Haythem Bany Salameh ,&nbsp;Vivek Ashok Bohara ,&nbsp;Anand Srivastava ,&nbsp;Moussa Ayyash\",\"doi\":\"10.1016/j.phycom.2024.102520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Free space optics (FSO) offers a promising opportunity to enhance next-generation network’s capacity with its unlicensed spectrum and wide bandwidth. However, jamming attacks, coupled with inherent anomalies in the FSO-based channel, threaten the performance of these networks. This is especially problematic for security-sensitive applications that demand a resilient communication infrastructure. To address this issue, optical intelligent reflecting surfaces (IRS) and unmanned aerial vehicles (UAVs) can provide promising solutions. This work introduces an efficient approach for mirror element assignment in UAV-assisted FSO-based networks, aimed at mitigating reactive jamming attacks while satisfying users’ quality-of-service (QoS) requirements. To ensure network reliability, we formulate an optimization problem that enhances overall network performance by simultaneously allocating resources such as mirror elements with awareness of jamming attacks. The formulated optimization problem is a binary linear programming problem, which is generally NP-hard. To address this, we introduce a batch-based sequential fixing linear programming procedure called the Reactive Jamming-Aware Mirror Element Allocation (RJA-MEA) scheme. This scheme optimally assigns mirror elements to satisfy the users’ rate demands. In this paper, the performance of the RJA-MEA scheme is compared with reference schemes such as Reactive Jamming Unaware-Mirror Element Allocation (RJU-MEA), Reactive Jamming-Aware Equal Mirror Element Allocation (RJA-EMEA), and Reactive Jamming Unaware-Equal Mirror Element Allocation (RJU-EMEA) schemes. The simulation results reveal that the proposed RJA-MEA scheme surpasses existing reference schemes, thereby significantly improving the overall network sumrate performance.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"67 \",\"pages\":\"Article 102520\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724002386\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002386","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自由空间光学(FSO)具有未授权频谱和宽带宽的特点,为提高下一代网络的容量提供了一个大有可为的机会。然而,干扰攻击以及基于 FSO 的信道中固有的异常现象威胁着这些网络的性能。对于需要弹性通信基础设施的安全敏感型应用来说,这尤其成问题。为解决这一问题,光学智能反射面(IRS)和无人飞行器(UAV)可提供前景广阔的解决方案。这项工作介绍了一种在无人飞行器辅助的基于 FSO 的网络中进行镜元分配的高效方法,旨在减轻被动干扰攻击,同时满足用户的服务质量(QoS)要求。为了确保网络的可靠性,我们提出了一个优化问题,通过同时分配镜像元素等资源,提高网络的整体性能,并同时考虑到干扰攻击。所提出的优化问题是一个二元线性规划问题,通常具有 NP 难度。为了解决这个问题,我们引入了一种基于批处理的顺序固定线性规划程序,称为 "反应式干扰感知镜像元素分配(RJA-MEA)"方案。该方案以最佳方式分配镜像元素,以满足用户的速率需求。本文将 RJA-MEA 方案的性能与参考方案进行了比较,如反应式干扰无感知镜像元分配 (RJU-MEA)、反应式干扰感知等效镜像元分配 (RJA-EMEA) 和反应式干扰无感知等效镜像元分配 (RJU-EMEA)。仿真结果表明,拟议的 RJA-MEA 方案超越了现有的参考方案,从而显著提高了整体网络总和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On mitigating reactive jamming with dynamic resource allocation in optical IRS and UAV-assisted FSO-based networks
Free space optics (FSO) offers a promising opportunity to enhance next-generation network’s capacity with its unlicensed spectrum and wide bandwidth. However, jamming attacks, coupled with inherent anomalies in the FSO-based channel, threaten the performance of these networks. This is especially problematic for security-sensitive applications that demand a resilient communication infrastructure. To address this issue, optical intelligent reflecting surfaces (IRS) and unmanned aerial vehicles (UAVs) can provide promising solutions. This work introduces an efficient approach for mirror element assignment in UAV-assisted FSO-based networks, aimed at mitigating reactive jamming attacks while satisfying users’ quality-of-service (QoS) requirements. To ensure network reliability, we formulate an optimization problem that enhances overall network performance by simultaneously allocating resources such as mirror elements with awareness of jamming attacks. The formulated optimization problem is a binary linear programming problem, which is generally NP-hard. To address this, we introduce a batch-based sequential fixing linear programming procedure called the Reactive Jamming-Aware Mirror Element Allocation (RJA-MEA) scheme. This scheme optimally assigns mirror elements to satisfy the users’ rate demands. In this paper, the performance of the RJA-MEA scheme is compared with reference schemes such as Reactive Jamming Unaware-Mirror Element Allocation (RJU-MEA), Reactive Jamming-Aware Equal Mirror Element Allocation (RJA-EMEA), and Reactive Jamming Unaware-Equal Mirror Element Allocation (RJU-EMEA) schemes. The simulation results reveal that the proposed RJA-MEA scheme surpasses existing reference schemes, thereby significantly improving the overall network sumrate performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
期刊最新文献
Hybrid FSO/RF and UWOC system for enabling terrestrial–underwater communication: Performance analysis Enhancing performance of end-to-end communication system using Attention Mechanism-based Sparse Autoencoder over Rayleigh fading channel Clustering based strategic 3D deployment and trajectory optimization of UAVs with A-star algorithm for enhanced disaster response Modified fractional power allocation for downlink cell-free massive MIMO systems Joint RSU and agent vehicle cooperative localization using mmWave sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1