用于稀疏信号恢复的快速块稀疏 Kaczmarz 算法

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-10-11 DOI:10.1016/j.sigpro.2024.109736
Yu-Qi Niu, Bing Zheng
{"title":"用于稀疏信号恢复的快速块稀疏 Kaczmarz 算法","authors":"Yu-Qi Niu,&nbsp;Bing Zheng","doi":"10.1016/j.sigpro.2024.109736","DOIUrl":null,"url":null,"abstract":"<div><div>The randomized sparse Kaczmarz (RSK) method is an iterative algorithm for computing sparse solutions of linear systems. Recently, Tondji and Lorenz analyzed the parallel version of the RSK method and established its linear expected convergence by implementing a randomized control scheme for subset selection at each iteration. Expanding upon this groundwork, we explore a natural extension of the randomized control scheme: greedy strategies such as the Motzkin criteria. Specifically, we propose a fast block sparse Kaczmarz algorithm based on the Motzkin criterion. It is proved that the proposed method converges linearly to the sparse solutions of the linear systems. Additionally, we offer error estimates for linear systems with noisy right-hand sides, and show that the proposed method converges within an error threshold of the noise level. Numerical results substantiate the feasibility of our proposed method and highlight its superior convergence rate compared to the parallel version of the RSK method.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109736"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast block sparse Kaczmarz algorithm for sparse signal recovery\",\"authors\":\"Yu-Qi Niu,&nbsp;Bing Zheng\",\"doi\":\"10.1016/j.sigpro.2024.109736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The randomized sparse Kaczmarz (RSK) method is an iterative algorithm for computing sparse solutions of linear systems. Recently, Tondji and Lorenz analyzed the parallel version of the RSK method and established its linear expected convergence by implementing a randomized control scheme for subset selection at each iteration. Expanding upon this groundwork, we explore a natural extension of the randomized control scheme: greedy strategies such as the Motzkin criteria. Specifically, we propose a fast block sparse Kaczmarz algorithm based on the Motzkin criterion. It is proved that the proposed method converges linearly to the sparse solutions of the linear systems. Additionally, we offer error estimates for linear systems with noisy right-hand sides, and show that the proposed method converges within an error threshold of the noise level. Numerical results substantiate the feasibility of our proposed method and highlight its superior convergence rate compared to the parallel version of the RSK method.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109736\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003566\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003566","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随机稀疏 Kaczmarz(RSK)方法是一种计算线性系统稀疏解的迭代算法。最近,Tondji 和 Lorenz 分析了 RSK 方法的并行版本,并通过在每次迭代中实施子集选择的随机控制方案,确定了其线性预期收敛性。在此基础上,我们探索了随机控制方案的自然扩展:贪婪策略,如莫兹金准则。具体来说,我们提出了一种基于莫兹金准则的快速块稀疏 Kaczmarz 算法。事实证明,所提方法线性收敛于线性系统的稀疏解。此外,我们还为具有噪声右边的线性系统提供了误差估计,并证明所提出的方法能在噪声水平的误差阈值内收敛。数值结果证明了我们提出的方法的可行性,并突出了它与并行版 RSK 方法相比更优越的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast block sparse Kaczmarz algorithm for sparse signal recovery
The randomized sparse Kaczmarz (RSK) method is an iterative algorithm for computing sparse solutions of linear systems. Recently, Tondji and Lorenz analyzed the parallel version of the RSK method and established its linear expected convergence by implementing a randomized control scheme for subset selection at each iteration. Expanding upon this groundwork, we explore a natural extension of the randomized control scheme: greedy strategies such as the Motzkin criteria. Specifically, we propose a fast block sparse Kaczmarz algorithm based on the Motzkin criterion. It is proved that the proposed method converges linearly to the sparse solutions of the linear systems. Additionally, we offer error estimates for linear systems with noisy right-hand sides, and show that the proposed method converges within an error threshold of the noise level. Numerical results substantiate the feasibility of our proposed method and highlight its superior convergence rate compared to the parallel version of the RSK method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1