{"title":"通过机器学习确定加热板上管束的传热特性","authors":"","doi":"10.1016/j.csite.2024.105280","DOIUrl":null,"url":null,"abstract":"<div><div>In this study machine learning is used with the aid of a deep neural network algorithm to predict convective heat transfer characteristics for inline and staggered tube bundles, and correlation equations for Nusselt number and friction factor are derived. Machine learning algorithm's data were obtained from experimental work for various transverse pitch of the tube bundles, longitudinal pitch of the tube bundles and Reynolds number. 276 experimental data points were taken for both inline and staggered tube bundles. However, considering that the data obtained from the experimental study may be insufficient for training, a two-step data augmentation method and retraining with cross-validation was used to prevent data deficiency in the deep neural network structure. Thus, the unseen data in the experimental work were also predicted. The coefficient of determination for the DNN model predictions was obtained greater than 0.96. One correlation equation for Nusselt Number and three correlation equations for friction factor were proposed from the augmented data with machine learning. The <em>R</em><sup><em>2</em></sup> values of the correlation equations varied between 89 % and 99 %. As a result, machine learning methods successfully applied to predict the Nusselt number and friction factor of tube bundles consistent with the experimental data<strong>.</strong></div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of heat transfer characteristics of tube bundles over heating plate by machine learning\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study machine learning is used with the aid of a deep neural network algorithm to predict convective heat transfer characteristics for inline and staggered tube bundles, and correlation equations for Nusselt number and friction factor are derived. Machine learning algorithm's data were obtained from experimental work for various transverse pitch of the tube bundles, longitudinal pitch of the tube bundles and Reynolds number. 276 experimental data points were taken for both inline and staggered tube bundles. However, considering that the data obtained from the experimental study may be insufficient for training, a two-step data augmentation method and retraining with cross-validation was used to prevent data deficiency in the deep neural network structure. Thus, the unseen data in the experimental work were also predicted. The coefficient of determination for the DNN model predictions was obtained greater than 0.96. One correlation equation for Nusselt Number and three correlation equations for friction factor were proposed from the augmented data with machine learning. The <em>R</em><sup><em>2</em></sup> values of the correlation equations varied between 89 % and 99 %. As a result, machine learning methods successfully applied to predict the Nusselt number and friction factor of tube bundles consistent with the experimental data<strong>.</strong></div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X2401311X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X2401311X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Determination of heat transfer characteristics of tube bundles over heating plate by machine learning
In this study machine learning is used with the aid of a deep neural network algorithm to predict convective heat transfer characteristics for inline and staggered tube bundles, and correlation equations for Nusselt number and friction factor are derived. Machine learning algorithm's data were obtained from experimental work for various transverse pitch of the tube bundles, longitudinal pitch of the tube bundles and Reynolds number. 276 experimental data points were taken for both inline and staggered tube bundles. However, considering that the data obtained from the experimental study may be insufficient for training, a two-step data augmentation method and retraining with cross-validation was used to prevent data deficiency in the deep neural network structure. Thus, the unseen data in the experimental work were also predicted. The coefficient of determination for the DNN model predictions was obtained greater than 0.96. One correlation equation for Nusselt Number and three correlation equations for friction factor were proposed from the augmented data with machine learning. The R2 values of the correlation equations varied between 89 % and 99 %. As a result, machine learning methods successfully applied to predict the Nusselt number and friction factor of tube bundles consistent with the experimental data.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.