{"title":"基于行为和脑电图分析的拥堵导致的激进驾驶表现","authors":"Shuo Zhao, Geqi Qi, Peihao Li, Wei Guan","doi":"10.1016/j.jsr.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div><em>Introduction:</em> Traffic congestion is closely related to traffic accidents, as prolonged traffic congestion often results in frustration and aggressive behavior. Moreover, in daily commuting, drivers often have to pass through multiple congested road sections, and aggressive driving performance due to exiting or re-entering traffic jams has rarely been analyzed. <em>Method:</em> To fill this research gap, we designed an intermittent traffic congestion scenario using a driving simulator and employed unsupervised learning algorithms to extract high-level driving patterns gathered with EEG data to investigate the continuous effects of traffic jams, particularly when drivers exit and re-enter traffic jam conditions. <em>Results:</em> We discovered that drivers, upon exiting congested areas, engage in abrupt braking with a decrease in braking time of approximately 0.47 s and smooth lane changes with an increase in lane change time of approximately 0.5 s to maintain high-speed driving conditions. When drivers re-enter a traffic jam, they exhibit more abrupt stop-and-go behaviors to escape the traffic jam. The results of the risk assessment of driving behavior indicated that after leaving congested areas, free-flow segments have greater risk factors than other segments. Electroencephalogram (EEG) data were analyzed to identify instances of mind-wandering when a driver transitions into free-flowing segments, followed by a substantial increase in brain activity upon re-entry into congested traffic conditions. <em>Practical Applications:</em> The research outcomes suggest that optimizing the road segments after congestion, using appropriate entertainment systems to reduce driver stress, and implementing adaptive traffic signals to achieve smooth transitions during intermittent congestion can reduce aggressive driving behavior and enhance traffic safety.</div></div>","PeriodicalId":48224,"journal":{"name":"Journal of Safety Research","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The aggressive driving performance caused by congestion based on behavior and EEG analysis\",\"authors\":\"Shuo Zhao, Geqi Qi, Peihao Li, Wei Guan\",\"doi\":\"10.1016/j.jsr.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Introduction:</em> Traffic congestion is closely related to traffic accidents, as prolonged traffic congestion often results in frustration and aggressive behavior. Moreover, in daily commuting, drivers often have to pass through multiple congested road sections, and aggressive driving performance due to exiting or re-entering traffic jams has rarely been analyzed. <em>Method:</em> To fill this research gap, we designed an intermittent traffic congestion scenario using a driving simulator and employed unsupervised learning algorithms to extract high-level driving patterns gathered with EEG data to investigate the continuous effects of traffic jams, particularly when drivers exit and re-enter traffic jam conditions. <em>Results:</em> We discovered that drivers, upon exiting congested areas, engage in abrupt braking with a decrease in braking time of approximately 0.47 s and smooth lane changes with an increase in lane change time of approximately 0.5 s to maintain high-speed driving conditions. When drivers re-enter a traffic jam, they exhibit more abrupt stop-and-go behaviors to escape the traffic jam. The results of the risk assessment of driving behavior indicated that after leaving congested areas, free-flow segments have greater risk factors than other segments. Electroencephalogram (EEG) data were analyzed to identify instances of mind-wandering when a driver transitions into free-flowing segments, followed by a substantial increase in brain activity upon re-entry into congested traffic conditions. <em>Practical Applications:</em> The research outcomes suggest that optimizing the road segments after congestion, using appropriate entertainment systems to reduce driver stress, and implementing adaptive traffic signals to achieve smooth transitions during intermittent congestion can reduce aggressive driving behavior and enhance traffic safety.</div></div>\",\"PeriodicalId\":48224,\"journal\":{\"name\":\"Journal of Safety Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Safety Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022437524001440\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Safety Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022437524001440","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
The aggressive driving performance caused by congestion based on behavior and EEG analysis
Introduction: Traffic congestion is closely related to traffic accidents, as prolonged traffic congestion often results in frustration and aggressive behavior. Moreover, in daily commuting, drivers often have to pass through multiple congested road sections, and aggressive driving performance due to exiting or re-entering traffic jams has rarely been analyzed. Method: To fill this research gap, we designed an intermittent traffic congestion scenario using a driving simulator and employed unsupervised learning algorithms to extract high-level driving patterns gathered with EEG data to investigate the continuous effects of traffic jams, particularly when drivers exit and re-enter traffic jam conditions. Results: We discovered that drivers, upon exiting congested areas, engage in abrupt braking with a decrease in braking time of approximately 0.47 s and smooth lane changes with an increase in lane change time of approximately 0.5 s to maintain high-speed driving conditions. When drivers re-enter a traffic jam, they exhibit more abrupt stop-and-go behaviors to escape the traffic jam. The results of the risk assessment of driving behavior indicated that after leaving congested areas, free-flow segments have greater risk factors than other segments. Electroencephalogram (EEG) data were analyzed to identify instances of mind-wandering when a driver transitions into free-flowing segments, followed by a substantial increase in brain activity upon re-entry into congested traffic conditions. Practical Applications: The research outcomes suggest that optimizing the road segments after congestion, using appropriate entertainment systems to reduce driver stress, and implementing adaptive traffic signals to achieve smooth transitions during intermittent congestion can reduce aggressive driving behavior and enhance traffic safety.
期刊介绍:
Journal of Safety Research is an interdisciplinary publication that provides for the exchange of ideas and scientific evidence capturing studies through research in all areas of safety and health, including traffic, workplace, home, and community. This forum invites research using rigorous methodologies, encourages translational research, and engages the global scientific community through various partnerships (e.g., this outreach includes highlighting some of the latest findings from the U.S. Centers for Disease Control and Prevention).