考虑填料形态和聚集的纳米管聚合物复合材料机械响应的原子模拟和机器学习预测

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-10-17 DOI:10.1016/j.commatsci.2024.113399
Hamid Ghasemi , Hessam Yazdani
{"title":"考虑填料形态和聚集的纳米管聚合物复合材料机械响应的原子模拟和机器学习预测","authors":"Hamid Ghasemi ,&nbsp;Hessam Yazdani","doi":"10.1016/j.commatsci.2024.113399","DOIUrl":null,"url":null,"abstract":"<div><div>Pursuing innovative materials through integrating machine learning (ML) with materials informatics hinges critically upon establishing accurate processing-structure–property-performance relationships and consistently applying them in training datasets. Pivotal to unraveling these relationships is an accurate representation of the microstructure in computational models. In this study, we use transmission electron microscopy (TEM) micrographs of carbon nanotubes (CNTs) within a polymer matrix to construct representative polymer-nanotube composite (PNC) models. We then simulate the models using the coarse-grained molecular dynamics (CG-MD) technique to elucidate the influence of filler morphology and aggregation on the mechanical properties of PNCs. Besides CNTs, we consider cyanoethyl nanotubes (C<sub>3</sub>NNT) as a representative of the carbon nitride family, which has remained largely unexplored as a PNC filler for load-bearing purposes. We employ the CG-MD results to train ML models—neural network (NN), support vector regression (SVR), and Gaussian process regression (GPR)—to predict the strain–stress responses of PNCs. Results indicate the profound influence of the filler morphology and aggregation on the elastic and shear stiffness of PNC composites. A high degree of transverse isotropy is observed in the mechanical behavior of composites with perfectly oriented fillers, with Poisson’s ratios surpassing conventional upper bounds observed in isotropic materials. For a given morphology, C<sub>3</sub>NNT composites exhibit higher stiffness in longitudinal and transverse directions than CNT composites. The ML models demonstrate accuracy in predicting the strain–stress response of the composites, with the GPR model showing the highest accuracy, followed by the NN and SVM models. This accuracy makes the ML models readily integrable into a multiscale modeling framework, significantly enhancing the efficiency of transferring information across scales.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113399"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation\",\"authors\":\"Hamid Ghasemi ,&nbsp;Hessam Yazdani\",\"doi\":\"10.1016/j.commatsci.2024.113399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pursuing innovative materials through integrating machine learning (ML) with materials informatics hinges critically upon establishing accurate processing-structure–property-performance relationships and consistently applying them in training datasets. Pivotal to unraveling these relationships is an accurate representation of the microstructure in computational models. In this study, we use transmission electron microscopy (TEM) micrographs of carbon nanotubes (CNTs) within a polymer matrix to construct representative polymer-nanotube composite (PNC) models. We then simulate the models using the coarse-grained molecular dynamics (CG-MD) technique to elucidate the influence of filler morphology and aggregation on the mechanical properties of PNCs. Besides CNTs, we consider cyanoethyl nanotubes (C<sub>3</sub>NNT) as a representative of the carbon nitride family, which has remained largely unexplored as a PNC filler for load-bearing purposes. We employ the CG-MD results to train ML models—neural network (NN), support vector regression (SVR), and Gaussian process regression (GPR)—to predict the strain–stress responses of PNCs. Results indicate the profound influence of the filler morphology and aggregation on the elastic and shear stiffness of PNC composites. A high degree of transverse isotropy is observed in the mechanical behavior of composites with perfectly oriented fillers, with Poisson’s ratios surpassing conventional upper bounds observed in isotropic materials. For a given morphology, C<sub>3</sub>NNT composites exhibit higher stiffness in longitudinal and transverse directions than CNT composites. The ML models demonstrate accuracy in predicting the strain–stress response of the composites, with the GPR model showing the highest accuracy, followed by the NN and SVM models. This accuracy makes the ML models readily integrable into a multiscale modeling framework, significantly enhancing the efficiency of transferring information across scales.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"246 \",\"pages\":\"Article 113399\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624006207\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006207","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过将机器学习(ML)与材料信息学相整合来追求创新材料,关键在于建立准确的加工-结构-性能关系,并将其持续应用于训练数据集。要揭示这些关系,关键是在计算模型中准确表示微观结构。在本研究中,我们使用聚合物基体中碳纳米管(CNT)的透射电子显微镜(TEM)显微照片来构建具有代表性的聚合物-纳米管复合材料(PNC)模型。然后,我们使用粗粒度分子动力学(CG-MD)技术对模型进行模拟,以阐明填料形态和聚集对 PNC 机械性能的影响。除碳纳米管外,我们还将氰乙基纳米管(C3NNT)作为碳氮化物家族的代表,这种材料作为 PNC 填料用于承重目的在很大程度上仍未得到开发。我们利用 CG-MD 结果训练 ML 模型--神经网络 (NN)、支持向量回归 (SVR) 和高斯过程回归 (GPR)--以预测 PNC 的应变应力响应。结果表明,填料形态和聚集对 PNC 复合材料的弹性和剪切刚度有深远影响。在完全取向填料的复合材料机械行为中观察到了高度的横向各向同性,泊松比超过了在各向同性材料中观察到的传统上限。在给定形态下,C3NNT 复合材料在纵向和横向的刚度均高于 CNT 复合材料。ML 模型能准确预测复合材料的应变应力响应,其中 GPR 模型的准确度最高,其次是 NN 和 SVM 模型。这种准确性使得 ML 模型很容易集成到多尺度建模框架中,从而大大提高了跨尺度信息传递的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation
Pursuing innovative materials through integrating machine learning (ML) with materials informatics hinges critically upon establishing accurate processing-structure–property-performance relationships and consistently applying them in training datasets. Pivotal to unraveling these relationships is an accurate representation of the microstructure in computational models. In this study, we use transmission electron microscopy (TEM) micrographs of carbon nanotubes (CNTs) within a polymer matrix to construct representative polymer-nanotube composite (PNC) models. We then simulate the models using the coarse-grained molecular dynamics (CG-MD) technique to elucidate the influence of filler morphology and aggregation on the mechanical properties of PNCs. Besides CNTs, we consider cyanoethyl nanotubes (C3NNT) as a representative of the carbon nitride family, which has remained largely unexplored as a PNC filler for load-bearing purposes. We employ the CG-MD results to train ML models—neural network (NN), support vector regression (SVR), and Gaussian process regression (GPR)—to predict the strain–stress responses of PNCs. Results indicate the profound influence of the filler morphology and aggregation on the elastic and shear stiffness of PNC composites. A high degree of transverse isotropy is observed in the mechanical behavior of composites with perfectly oriented fillers, with Poisson’s ratios surpassing conventional upper bounds observed in isotropic materials. For a given morphology, C3NNT composites exhibit higher stiffness in longitudinal and transverse directions than CNT composites. The ML models demonstrate accuracy in predicting the strain–stress response of the composites, with the GPR model showing the highest accuracy, followed by the NN and SVM models. This accuracy makes the ML models readily integrable into a multiscale modeling framework, significantly enhancing the efficiency of transferring information across scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1