用于胸部 CT 图像多供应商内核转换的有监督和无监督深度学习混合模型

Yujin Nam , Jooae Choe , Sang Min Lee , Joon Beom Seo , Hyunna Lee
{"title":"用于胸部 CT 图像多供应商内核转换的有监督和无监督深度学习混合模型","authors":"Yujin Nam ,&nbsp;Jooae Choe ,&nbsp;Sang Min Lee ,&nbsp;Joon Beom Seo ,&nbsp;Hyunna Lee","doi":"10.1016/j.ibmed.2024.100169","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>When reconstructing a computed tomography (CT) volume, different filter kernels can be used to highlight different structures depending on the medical purpose. The aim of this study was to perform CT conversion for intra-/inter-vendor kernel conversion while preserving image quality.</div></div><div><h3>Materials and methods</h3><div>This study used CT scans from 632 patients who underwent contrast-enhanced chest CT on either a GE or Siemens scanner. Raw data from each CT scan was reconstructed with Standard and Chest kernels of GE or B10f, B30f, B50f, and B70f kernels of Siemens. In intra-vendor, all images reconstructed with one kernel are paired with another kernel, so the U-Net based supervised method was applied. In the case of inter-vendor where the input and target kernels have each different vendor, Siemens' B30f and GE's Standard kernel were trained through unsupervised image-to-image translation using contrastive learning.</div></div><div><h3>Results</h3><div>In the intra-vendor, quantitative evaluation of the image quality of our model showed reasonable performance on the internal test set (structural similarity index measure (SSIM) &gt; 0.96, peak signal-to-noise ratio (PSNR) &gt; 42.55) compared with the SR-block model (SSIM &gt; 0.93, PSNR &gt; 42.92). In the 6-class classification to evaluate the inter-vendor conversion performance, similar accuracy was shown in the converted image (0.977) compared to the original image (0.998).</div></div><div><h3>Conclusions</h3><div>In this study, we developed a network that can translate a given CT image into a target kernel among multi-vendors. Our model showed clinically acceptable quality in quantitative and qualitative evaluations, including image quality metrics.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100169"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid of supervised and unsupervised deep learning models for multi-vendor kernel conversion of chest CT images\",\"authors\":\"Yujin Nam ,&nbsp;Jooae Choe ,&nbsp;Sang Min Lee ,&nbsp;Joon Beom Seo ,&nbsp;Hyunna Lee\",\"doi\":\"10.1016/j.ibmed.2024.100169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>When reconstructing a computed tomography (CT) volume, different filter kernels can be used to highlight different structures depending on the medical purpose. The aim of this study was to perform CT conversion for intra-/inter-vendor kernel conversion while preserving image quality.</div></div><div><h3>Materials and methods</h3><div>This study used CT scans from 632 patients who underwent contrast-enhanced chest CT on either a GE or Siemens scanner. Raw data from each CT scan was reconstructed with Standard and Chest kernels of GE or B10f, B30f, B50f, and B70f kernels of Siemens. In intra-vendor, all images reconstructed with one kernel are paired with another kernel, so the U-Net based supervised method was applied. In the case of inter-vendor where the input and target kernels have each different vendor, Siemens' B30f and GE's Standard kernel were trained through unsupervised image-to-image translation using contrastive learning.</div></div><div><h3>Results</h3><div>In the intra-vendor, quantitative evaluation of the image quality of our model showed reasonable performance on the internal test set (structural similarity index measure (SSIM) &gt; 0.96, peak signal-to-noise ratio (PSNR) &gt; 42.55) compared with the SR-block model (SSIM &gt; 0.93, PSNR &gt; 42.92). In the 6-class classification to evaluate the inter-vendor conversion performance, similar accuracy was shown in the converted image (0.977) compared to the original image (0.998).</div></div><div><h3>Conclusions</h3><div>In this study, we developed a network that can translate a given CT image into a target kernel among multi-vendors. Our model showed clinically acceptable quality in quantitative and qualitative evaluations, including image quality metrics.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652122400036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122400036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的在重建计算机断层扫描(CT)容积时,可根据医疗目的使用不同的滤波核来突出不同的结构。本研究的目的是在保持图像质量的前提下,进行 CT 内/供应商间的内核转换。材料和方法本研究使用了 632 名患者的 CT 扫描数据,这些患者在 GE 或西门子扫描仪上进行了对比增强胸部 CT 扫描。每次 CT 扫描的原始数据都使用 GE 的标准和胸部内核或西门子的 B10f、B30f、B50f 和 B70f 内核进行重建。在供应商内部,用一种内核重建的所有图像都与另一种内核配对,因此采用了基于 U-Net 的监督方法。在供应商之间,输入和目标内核分别来自不同的供应商,西门子的 B30f 内核和通用电气的标准内核是通过对比学习进行无监督图像到图像转换训练的。结果在供应商内部,与 SR 块模型(SSIM 为 0.93,PSNR 为 42.92)相比,我们的模型在内部测试集(结构相似性指数(SSIM)为 0.96,峰值信噪比(PSNR)为 42.55)上的图像质量定量评估显示出合理的性能。在评估供应商间转换性能的 6 级分类中,转换后的图像(0.977)与原始图像(0.998)显示出相似的准确性。在定量和定性评估(包括图像质量指标)中,我们的模型显示出临床上可接受的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid of supervised and unsupervised deep learning models for multi-vendor kernel conversion of chest CT images

Objective

When reconstructing a computed tomography (CT) volume, different filter kernels can be used to highlight different structures depending on the medical purpose. The aim of this study was to perform CT conversion for intra-/inter-vendor kernel conversion while preserving image quality.

Materials and methods

This study used CT scans from 632 patients who underwent contrast-enhanced chest CT on either a GE or Siemens scanner. Raw data from each CT scan was reconstructed with Standard and Chest kernels of GE or B10f, B30f, B50f, and B70f kernels of Siemens. In intra-vendor, all images reconstructed with one kernel are paired with another kernel, so the U-Net based supervised method was applied. In the case of inter-vendor where the input and target kernels have each different vendor, Siemens' B30f and GE's Standard kernel were trained through unsupervised image-to-image translation using contrastive learning.

Results

In the intra-vendor, quantitative evaluation of the image quality of our model showed reasonable performance on the internal test set (structural similarity index measure (SSIM) > 0.96, peak signal-to-noise ratio (PSNR) > 42.55) compared with the SR-block model (SSIM > 0.93, PSNR > 42.92). In the 6-class classification to evaluate the inter-vendor conversion performance, similar accuracy was shown in the converted image (0.977) compared to the original image (0.998).

Conclusions

In this study, we developed a network that can translate a given CT image into a target kernel among multi-vendors. Our model showed clinically acceptable quality in quantitative and qualitative evaluations, including image quality metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1