将源自树叶的木质纤维素支架金属化,用于高性能柔性电子器件和低聚消毒剂

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2024-10-18 DOI:10.1038/s41528-024-00353-9
Rakesh Rajendran Nair, Mihai Nita-Lazar, Valeriu Robert Badescu, Cristina Iftode, Jakob Wolansky, Tobias Antrack, Hans Kleemann, Karl Leo
{"title":"将源自树叶的木质纤维素支架金属化,用于高性能柔性电子器件和低聚消毒剂","authors":"Rakesh Rajendran Nair, Mihai Nita-Lazar, Valeriu Robert Badescu, Cristina Iftode, Jakob Wolansky, Tobias Antrack, Hans Kleemann, Karl Leo","doi":"10.1038/s41528-024-00353-9","DOIUrl":null,"url":null,"abstract":"Vascular tubules in natural leaves form quasi-fractal networks that can be metallized. Traditional metallization techniques for these lignocellulose structures are complex, involving metal sputtering, nanoparticle solutions, or multiple chemical pretreatments. Here we present a novel, facile, and reliable method for metallizing leaf-derived lignocellulose scaffolds using silver microparticles. The method achieves properties on-par with the state-of-the-art, such as broadband optical transmittance of over 80%, sheet resistances below 1 Ω/sq., and a current-carrying capacity exceeding 6 A over a 2.5 × 2.5 cm² quasi-fractal electrode. We also demonstrate copper electrodeposition as a cost-effective approach towards fabricating such conductive, biomimetic quasi-fractals. Additionally, we show that these metallized structures can effectively eliminate pathogenic microorganisms like fecal coliforms and E. coli, which are bacterial indicators of microbiological contamination of water. We finally show that these oligodynamic properties can be significantly enhanced with a small externally applied voltage, indicating the noteworthy potential of such structures for water purification and pollution control.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-8"},"PeriodicalIF":12.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00353-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Metallization of leaf-derived lignocellulose scaffolds for high-performance flexible electronics and oligodynamic disinfection\",\"authors\":\"Rakesh Rajendran Nair, Mihai Nita-Lazar, Valeriu Robert Badescu, Cristina Iftode, Jakob Wolansky, Tobias Antrack, Hans Kleemann, Karl Leo\",\"doi\":\"10.1038/s41528-024-00353-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vascular tubules in natural leaves form quasi-fractal networks that can be metallized. Traditional metallization techniques for these lignocellulose structures are complex, involving metal sputtering, nanoparticle solutions, or multiple chemical pretreatments. Here we present a novel, facile, and reliable method for metallizing leaf-derived lignocellulose scaffolds using silver microparticles. The method achieves properties on-par with the state-of-the-art, such as broadband optical transmittance of over 80%, sheet resistances below 1 Ω/sq., and a current-carrying capacity exceeding 6 A over a 2.5 × 2.5 cm² quasi-fractal electrode. We also demonstrate copper electrodeposition as a cost-effective approach towards fabricating such conductive, biomimetic quasi-fractals. Additionally, we show that these metallized structures can effectively eliminate pathogenic microorganisms like fecal coliforms and E. coli, which are bacterial indicators of microbiological contamination of water. We finally show that these oligodynamic properties can be significantly enhanced with a small externally applied voltage, indicating the noteworthy potential of such structures for water purification and pollution control.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00353-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00353-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00353-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

天然树叶中的维管形成了可金属化的准分形网络。这些木质纤维素结构的传统金属化技术非常复杂,涉及金属溅射、纳米粒子溶液或多种化学预处理。在这里,我们提出了一种新颖、简便、可靠的方法,利用银微颗粒对源自树叶的木质纤维素支架进行金属化。该方法实现了与最先进方法相当的性能,如超过 80% 的宽带光学透射率、低于 1 Ω/sq 的薄片电阻,以及在 2.5 × 2.5 平方厘米准分形电极上超过 6 A 的载流能力。我们还证明了铜电沉积是制造这种导电仿生物准分形的一种具有成本效益的方法。此外,我们还展示了这些金属化结构可有效消除粪大肠菌群和大肠杆菌等病原微生物,这些细菌是水质微生物污染的细菌指标。最后,我们还展示了这些寡动力特性可以在施加少量外部电压的情况下显著增强,这表明此类结构在水净化和污染控制方面具有值得关注的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metallization of leaf-derived lignocellulose scaffolds for high-performance flexible electronics and oligodynamic disinfection
Vascular tubules in natural leaves form quasi-fractal networks that can be metallized. Traditional metallization techniques for these lignocellulose structures are complex, involving metal sputtering, nanoparticle solutions, or multiple chemical pretreatments. Here we present a novel, facile, and reliable method for metallizing leaf-derived lignocellulose scaffolds using silver microparticles. The method achieves properties on-par with the state-of-the-art, such as broadband optical transmittance of over 80%, sheet resistances below 1 Ω/sq., and a current-carrying capacity exceeding 6 A over a 2.5 × 2.5 cm² quasi-fractal electrode. We also demonstrate copper electrodeposition as a cost-effective approach towards fabricating such conductive, biomimetic quasi-fractals. Additionally, we show that these metallized structures can effectively eliminate pathogenic microorganisms like fecal coliforms and E. coli, which are bacterial indicators of microbiological contamination of water. We finally show that these oligodynamic properties can be significantly enhanced with a small externally applied voltage, indicating the noteworthy potential of such structures for water purification and pollution control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Autonomous self-healing in a stretchable polybutadiene-based urethane and eutectic gallium indium conductive composite Tailoring threshold voltage of R2R printed SWCNT thin film transistors for realizing 4 bit ALU Flash synthesis of high-performance and color-tunable copper(I)-based cluster scintillators for efficient dynamic X-ray imaging Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics Unobstructive and safe-to-wear watt-level wireless charger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1