通过亲锌、疏水性、亲阴离子聚合物 "表皮 "实现富含氟化物和锌盐的梯度疏水相,用于无阳极固体锌电池

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-10-18 DOI:10.1039/d4ee01978d
Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun
{"title":"通过亲锌、疏水性、亲阴离子聚合物 \"表皮 \"实现富含氟化物和锌盐的梯度疏水相,用于无阳极固体锌电池","authors":"Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun","doi":"10.1039/d4ee01978d","DOIUrl":null,"url":null,"abstract":"Manipulating ion solvation sheath behaviour is of great significance for alleviating dendritic growth, hydrogen production, and metal corrosion, thus achieving long-term stability of zinc ion batteries. Herein, we rationally design a Zn2+·O=C group-derived contact ion pair (CIP)/aggregate (AGG)-rich electrolyte with Zn-philic and H2O-phobic features through in situ polymerization of 3-methacryloxypropyl trimethoxysilane monomers. Being attributed with this unique electrolyte design, this \"skin\" enables the generation of gradient fluoride, Zn-salt-rich hydrophobic solid electrolyte interface (SEI) layer through increasing the ratios of ZnF2/ZnO in SEI layer. Moreover, the amounts of ZnF2 in inner SEI are higher than those in outer SEI. Considering the higher dendrite-suppressing and desolvation ability of ZnF2 instead of ZnO, the SEI exhibits excellent capability in suppressing the growth of Zn dendrite and restraining H2O-related side reactions. Owing to its unprecedented average modulus (71.25 GPa), the SEI effectively inhibits the external stress originating from dendritic growth, the undesirable volume expansion of Zn and the long-lasting anode/electrolyte side reactions. Consequently, at high depth of discharge of 34.2%, the symmetric cell maintains long-term stability for over 1000 h, and anode-free battery delivers superior performance with a high-capacity retention of 99.2% after 110 cycles.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient fluoride, Zn-salt-rich hydrophobic interphase enabled by Zn-philic, H2O-phobic, anion-philic polymer 'skin' for anode-free solid Zn battery\",\"authors\":\"Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun\",\"doi\":\"10.1039/d4ee01978d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manipulating ion solvation sheath behaviour is of great significance for alleviating dendritic growth, hydrogen production, and metal corrosion, thus achieving long-term stability of zinc ion batteries. Herein, we rationally design a Zn2+·O=C group-derived contact ion pair (CIP)/aggregate (AGG)-rich electrolyte with Zn-philic and H2O-phobic features through in situ polymerization of 3-methacryloxypropyl trimethoxysilane monomers. Being attributed with this unique electrolyte design, this \\\"skin\\\" enables the generation of gradient fluoride, Zn-salt-rich hydrophobic solid electrolyte interface (SEI) layer through increasing the ratios of ZnF2/ZnO in SEI layer. Moreover, the amounts of ZnF2 in inner SEI are higher than those in outer SEI. Considering the higher dendrite-suppressing and desolvation ability of ZnF2 instead of ZnO, the SEI exhibits excellent capability in suppressing the growth of Zn dendrite and restraining H2O-related side reactions. Owing to its unprecedented average modulus (71.25 GPa), the SEI effectively inhibits the external stress originating from dendritic growth, the undesirable volume expansion of Zn and the long-lasting anode/electrolyte side reactions. Consequently, at high depth of discharge of 34.2%, the symmetric cell maintains long-term stability for over 1000 h, and anode-free battery delivers superior performance with a high-capacity retention of 99.2% after 110 cycles.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee01978d\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee01978d","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

操纵离子溶解鞘行为对于缓解树枝状生长、氢气产生和金属腐蚀,从而实现锌离子电池的长期稳定性具有重要意义。在此,我们通过原位聚合 3 甲基丙烯酰氧基丙基三甲氧基硅烷单体,合理地设计出一种 Zn2+-O=C 基团衍生的接触离子对(CIP)/聚集体(AGG)富电解质,它具有亲锌和疏水的特性。由于采用了这种独特的电解质设计,这种 "皮肤 "能够通过增加 SEI 层中 ZnF2/ZnO 的比例生成梯度氟化物、富含 Zn 盐的疏水性固体电解质界面(SEI)层。此外,内 SEI 中的 ZnF2 含量高于外 SEI。考虑到 ZnF2 比 ZnO 具有更高的枝晶抑制和脱溶能力,SEI 在抑制锌枝晶生长和抑制与 H2O 相关的副反应方面表现出卓越的能力。由于其前所未有的平均模量(71.25 GPa),SEI 能有效抑制枝晶生长所产生的外应力、锌的不良体积膨胀以及持久的阳极/电解质副反应。因此,在 34.2% 的高放电深度下,对称电池可保持 1000 小时以上的长期稳定性,无阳极电池性能优越,110 次循环后容量保持率高达 99.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient fluoride, Zn-salt-rich hydrophobic interphase enabled by Zn-philic, H2O-phobic, anion-philic polymer 'skin' for anode-free solid Zn battery
Manipulating ion solvation sheath behaviour is of great significance for alleviating dendritic growth, hydrogen production, and metal corrosion, thus achieving long-term stability of zinc ion batteries. Herein, we rationally design a Zn2+·O=C group-derived contact ion pair (CIP)/aggregate (AGG)-rich electrolyte with Zn-philic and H2O-phobic features through in situ polymerization of 3-methacryloxypropyl trimethoxysilane monomers. Being attributed with this unique electrolyte design, this "skin" enables the generation of gradient fluoride, Zn-salt-rich hydrophobic solid electrolyte interface (SEI) layer through increasing the ratios of ZnF2/ZnO in SEI layer. Moreover, the amounts of ZnF2 in inner SEI are higher than those in outer SEI. Considering the higher dendrite-suppressing and desolvation ability of ZnF2 instead of ZnO, the SEI exhibits excellent capability in suppressing the growth of Zn dendrite and restraining H2O-related side reactions. Owing to its unprecedented average modulus (71.25 GPa), the SEI effectively inhibits the external stress originating from dendritic growth, the undesirable volume expansion of Zn and the long-lasting anode/electrolyte side reactions. Consequently, at high depth of discharge of 34.2%, the symmetric cell maintains long-term stability for over 1000 h, and anode-free battery delivers superior performance with a high-capacity retention of 99.2% after 110 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Oxygen Redox Activities Governing High-Voltage Charging Reversibility of Ni-Rich Layered Cathodes Electrocatalytic nitrogen cycle: mechanism, materials, and momentum Stress Regulation via Surface Micro-etching and Reconstruction for Enhancing Triple-Cation Perovskite Solar Cells with the Efficiency of 25.54% Thermal Evaporating-Trapping Strategy to Synthesize Flexible and Robust Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries Global softening to manipulate sound velocity for reliable high-performance MgAgSb thermoelectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1