{"title":"通过反常霍尔效应研究范德华石墨烯/CuCrP2S6 异质结构中的近程磁性","authors":"Yuriy Dedkov, Elena Voloshina","doi":"10.1063/5.0223563","DOIUrl":null,"url":null,"abstract":"Recently, several experimental works have appeared in the literature where induced magnetism in single- and few-layer graphene (SL-gr and FL-gr) interfaced with layered van der Waals materials was investigated via the application of the anomalous Hall effect (AHE). In most of these works, it is suggested that the observation of the AHE in such systems can be explained by a magnetic exchange interaction appearing at the interface between graphene and the underlying magnetic insulator. Considering the recently studied FL-graphene/bulk-CuCrP2S6 system as an example, our careful and rigorous analysis of recent experimental and theoretical data presented in the literature shows that the claimed observation of the AHE and magnetic proximity effect in this system is not supported. Moreover, the theoretically calculated electronic structures of the studied system contain serious errors and flaws that cannot be considered as an accurate description of such an interface and cannot be taken as solid support for the proposed proximity effect.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"19 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the study of proximity magnetism in van der Waals graphene/CuCrP2S6 heterostructure via the anomalous Hall effect\",\"authors\":\"Yuriy Dedkov, Elena Voloshina\",\"doi\":\"10.1063/5.0223563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several experimental works have appeared in the literature where induced magnetism in single- and few-layer graphene (SL-gr and FL-gr) interfaced with layered van der Waals materials was investigated via the application of the anomalous Hall effect (AHE). In most of these works, it is suggested that the observation of the AHE in such systems can be explained by a magnetic exchange interaction appearing at the interface between graphene and the underlying magnetic insulator. Considering the recently studied FL-graphene/bulk-CuCrP2S6 system as an example, our careful and rigorous analysis of recent experimental and theoretical data presented in the literature shows that the claimed observation of the AHE and magnetic proximity effect in this system is not supported. Moreover, the theoretically calculated electronic structures of the studied system contain serious errors and flaws that cannot be considered as an accurate description of such an interface and cannot be taken as solid support for the proposed proximity effect.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223563\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223563","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
On the study of proximity magnetism in van der Waals graphene/CuCrP2S6 heterostructure via the anomalous Hall effect
Recently, several experimental works have appeared in the literature where induced magnetism in single- and few-layer graphene (SL-gr and FL-gr) interfaced with layered van der Waals materials was investigated via the application of the anomalous Hall effect (AHE). In most of these works, it is suggested that the observation of the AHE in such systems can be explained by a magnetic exchange interaction appearing at the interface between graphene and the underlying magnetic insulator. Considering the recently studied FL-graphene/bulk-CuCrP2S6 system as an example, our careful and rigorous analysis of recent experimental and theoretical data presented in the literature shows that the claimed observation of the AHE and magnetic proximity effect in this system is not supported. Moreover, the theoretically calculated electronic structures of the studied system contain serious errors and flaws that cannot be considered as an accurate description of such an interface and cannot be taken as solid support for the proposed proximity effect.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.