消除杂质并优化 Na4Fe3(PO4)2P2O7 阴极可逆反应动力学的双位点缺陷工程,实现高性能钠离子电池

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-10-18 DOI:10.1016/j.ensm.2024.103848
Wenbin Fei, Xiaoping Zhang, Keyi Sun, Yian Wang, Kexin Rao, Mengting Deng, Chengdong Tao, Ling Wu, Yulei Sui
{"title":"消除杂质并优化 Na4Fe3(PO4)2P2O7 阴极可逆反应动力学的双位点缺陷工程,实现高性能钠离子电池","authors":"Wenbin Fei,&nbsp;Xiaoping Zhang,&nbsp;Keyi Sun,&nbsp;Yian Wang,&nbsp;Kexin Rao,&nbsp;Mengting Deng,&nbsp;Chengdong Tao,&nbsp;Ling Wu,&nbsp;Yulei Sui","doi":"10.1016/j.ensm.2024.103848","DOIUrl":null,"url":null,"abstract":"<div><div>Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> is a prominent polyanionic material widely studied as a cathode for sodium-ion batteries, valued for its stable cycling performance and cost-effectiveness. However, the sluggish diffusion kinetics of Na<sup>+</sup> associated with electrochemically inert NaFePO<sub>4</sub> impurities during synthesis strictly limit the rate performance and energy density of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. In this study, dual-site defects engineered Na<sub>4–2</sub><em><sub>x</sub></em>Fe<sub>3–1.5</sub><em><sub>y</sub></em>La<em><sub>y</sub></em>(PO<sub>4-</sub><em><sub>x</sub></em>Br<em><sub>x</sub></em>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode materials were synthesized using a facile mechanical activation method, by introducing trace amounts of LaBr<sub>3</sub> as additive. Fe defects originating from La doping eliminate the maricite-NaFePO<sub>4</sub> inert impurities and Na defects stemming from Br doping optimize the microchemical valence states and ion transport kinetics. The density functional theory demonstrates that Fe/Na dual-site defects in the lattice of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> reduce band gap and facilitate Na<sup>+</sup> migration passageway, thereby leading to a superior rate capability and stable sodium storage performance. Moreover, the sodium storage mechanism of the dual-site defects engineered Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode material is revealed. The optimal dual-site defects engineered cathode sample delivers excellent rate performance (55.2 mAh g<sup>-1</sup> at 50 C) and long cycling stability (capacity retention of 93 % after 2000 cycles at 10 C). This study provides a promising strategy for engineering dual-site defects to synthesize impurities-free Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode material with superior electrochemical performance.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103848"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-site defects engineering to eliminate impurities and optimize reversible reaction kinetics of Na4Fe3(PO4)2P2O7 cathode for superior performance sodium ion batteries\",\"authors\":\"Wenbin Fei,&nbsp;Xiaoping Zhang,&nbsp;Keyi Sun,&nbsp;Yian Wang,&nbsp;Kexin Rao,&nbsp;Mengting Deng,&nbsp;Chengdong Tao,&nbsp;Ling Wu,&nbsp;Yulei Sui\",\"doi\":\"10.1016/j.ensm.2024.103848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> is a prominent polyanionic material widely studied as a cathode for sodium-ion batteries, valued for its stable cycling performance and cost-effectiveness. However, the sluggish diffusion kinetics of Na<sup>+</sup> associated with electrochemically inert NaFePO<sub>4</sub> impurities during synthesis strictly limit the rate performance and energy density of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. In this study, dual-site defects engineered Na<sub>4–2</sub><em><sub>x</sub></em>Fe<sub>3–1.5</sub><em><sub>y</sub></em>La<em><sub>y</sub></em>(PO<sub>4-</sub><em><sub>x</sub></em>Br<em><sub>x</sub></em>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode materials were synthesized using a facile mechanical activation method, by introducing trace amounts of LaBr<sub>3</sub> as additive. Fe defects originating from La doping eliminate the maricite-NaFePO<sub>4</sub> inert impurities and Na defects stemming from Br doping optimize the microchemical valence states and ion transport kinetics. The density functional theory demonstrates that Fe/Na dual-site defects in the lattice of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> reduce band gap and facilitate Na<sup>+</sup> migration passageway, thereby leading to a superior rate capability and stable sodium storage performance. Moreover, the sodium storage mechanism of the dual-site defects engineered Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode material is revealed. The optimal dual-site defects engineered cathode sample delivers excellent rate performance (55.2 mAh g<sup>-1</sup> at 50 C) and long cycling stability (capacity retention of 93 % after 2000 cycles at 10 C). This study provides a promising strategy for engineering dual-site defects to synthesize impurities-free Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode material with superior electrochemical performance.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103848\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006743\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Na4Fe3(PO4)2P2O7是一种重要的多阴离子材料,被广泛研究用作钠离子电池的阴极,因其稳定的循环性能和成本效益而备受推崇。然而,合成过程中与电化学惰性 NaFePO4 杂质相关的 Na+ 缓慢扩散动力学严格限制了 Na4Fe3(PO4)2P2O7 的速率性能和能量密度。本研究通过引入微量的 LaBr3 作为添加剂,采用简便的机械活化法合成了双位缺陷工程 Na4-2xFe3-1.5yLay(PO4-xBrx)2P2O7 阴极材料。La 掺杂产生的 Fe 缺陷消除了云母-NaFePO4 惰性杂质,Br 掺杂产生的 Na 缺陷优化了微化学价态和离子传输动力学。密度泛函理论证明,Na4Fe3(PO4)2P2O7 晶格中的Fe/Na双位点缺陷降低了带隙,促进了Na+迁移通道的形成,从而使其具有优异的速率能力和稳定的储钠性能。此外,还揭示了双位点缺陷工程化 Na4Fe3(PO4)2P2O7 阴极材料的储钠机理。最佳双位点缺陷工程阴极样品具有优异的速率性能(50 C 时为 55.2 mAh g-1)和长期循环稳定性(10 C 时循环 2000 次后容量保持率为 93%)。这项研究为双位点缺陷工程提供了一种前景广阔的策略,可用于合成具有优异电化学性能的无杂质 Na4Fe3(PO4)2P2O7 阴极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-site defects engineering to eliminate impurities and optimize reversible reaction kinetics of Na4Fe3(PO4)2P2O7 cathode for superior performance sodium ion batteries
Na4Fe3(PO4)2P2O7 is a prominent polyanionic material widely studied as a cathode for sodium-ion batteries, valued for its stable cycling performance and cost-effectiveness. However, the sluggish diffusion kinetics of Na+ associated with electrochemically inert NaFePO4 impurities during synthesis strictly limit the rate performance and energy density of Na4Fe3(PO4)2P2O7. In this study, dual-site defects engineered Na4–2xFe3–1.5yLay(PO4-xBrx)2P2O7 cathode materials were synthesized using a facile mechanical activation method, by introducing trace amounts of LaBr3 as additive. Fe defects originating from La doping eliminate the maricite-NaFePO4 inert impurities and Na defects stemming from Br doping optimize the microchemical valence states and ion transport kinetics. The density functional theory demonstrates that Fe/Na dual-site defects in the lattice of Na4Fe3(PO4)2P2O7 reduce band gap and facilitate Na+ migration passageway, thereby leading to a superior rate capability and stable sodium storage performance. Moreover, the sodium storage mechanism of the dual-site defects engineered Na4Fe3(PO4)2P2O7 cathode material is revealed. The optimal dual-site defects engineered cathode sample delivers excellent rate performance (55.2 mAh g-1 at 50 C) and long cycling stability (capacity retention of 93 % after 2000 cycles at 10 C). This study provides a promising strategy for engineering dual-site defects to synthesize impurities-free Na4Fe3(PO4)2P2O7 cathode material with superior electrochemical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Optimized molecular interactions significantly enhance capacitive energy storage in polymer blends at 150 °C A High Power Flexible Zn-Air Battery via Concurrent PAA Modulation and Structural Tuning Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries “Preferential Adsorption-Decomposition and Strong Binding” Strategy-Derived Interphase Enabling Fast-Charging and Wide-Temperature Sodium Metal Batteries Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1