将蒸汽爆破的玉米秸秆清洁解构为高纯度纤维素纳米片和定义明确的木质素纳米管

IF 5.6 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Industrial Crops and Products Pub Date : 2024-10-19 DOI:10.1016/j.indcrop.2024.119765
{"title":"将蒸汽爆破的玉米秸秆清洁解构为高纯度纤维素纳米片和定义明确的木质素纳米管","authors":"","doi":"10.1016/j.indcrop.2024.119765","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient and structure-protective isolation of the main components of lignocellulosic biomass remains challenging for value-added utilization. In this study, we used corn straw waste, a vast yet underexplored biomass from agricultural residues, as the raw material to extract high-purity cellulose nanosheets and recycle the lignin components as well-defined lignin nanotubes (LNTs) in a tandem process. The process consisted of a feasible dilute alkali-assisted wet ball milling treatment of steam-exploded corn straw into high-purity cellulose nanosheets and a lignin solution, which was further transferred into LNTs by a molecular assembly method. Purity, morphology, chemical structure, and thermal behavior of high-purity cellulose nanosheets and LNTs were examined. The 98.9 wt% purity of the high-purity cellulose nanosheets was achieved with a crystallinity of 36.9 %, providing a solid foundation for further chemical modification. The LNTs exhibited remarkable antioxidant activity, opening new avenues for the development of lignin-based functional materials and fundamental research.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A clean deconstruction of steam-exploded corn straw into high purity cellulose nanosheets and well-defined lignin nanotubes\",\"authors\":\"\",\"doi\":\"10.1016/j.indcrop.2024.119765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient and structure-protective isolation of the main components of lignocellulosic biomass remains challenging for value-added utilization. In this study, we used corn straw waste, a vast yet underexplored biomass from agricultural residues, as the raw material to extract high-purity cellulose nanosheets and recycle the lignin components as well-defined lignin nanotubes (LNTs) in a tandem process. The process consisted of a feasible dilute alkali-assisted wet ball milling treatment of steam-exploded corn straw into high-purity cellulose nanosheets and a lignin solution, which was further transferred into LNTs by a molecular assembly method. Purity, morphology, chemical structure, and thermal behavior of high-purity cellulose nanosheets and LNTs were examined. The 98.9 wt% purity of the high-purity cellulose nanosheets was achieved with a crystallinity of 36.9 %, providing a solid foundation for further chemical modification. The LNTs exhibited remarkable antioxidant activity, opening new avenues for the development of lignin-based functional materials and fundamental research.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024017424\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024017424","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

高效分离木质纤维素生物质的主要成分并保护其结构,对于增值利用而言仍是一项挑战。在这项研究中,我们以玉米秸秆废料(一种来自农业残留物的大量但尚未得到充分开发的生物质)为原料,通过串联工艺提取高纯度纤维素纳米片,并将木质素成分回收为定义明确的木质素纳米管(LNTs)。该工艺包括采用可行的稀碱辅助湿球磨法将蒸汽爆破的玉米秸秆处理成高纯度的纤维素纳米片和木质素溶液,再通过分子组装法将其转化为 LNT。研究了高纯度纤维素纳米片和 LNT 的纯度、形态、化学结构和热行为。高纯度纤维素纳米片的纯度为 98.9%,结晶度为 36.9%,为进一步的化学改性奠定了坚实的基础。LNTs 具有显著的抗氧化活性,为木质素基功能材料的开发和基础研究开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A clean deconstruction of steam-exploded corn straw into high purity cellulose nanosheets and well-defined lignin nanotubes
The efficient and structure-protective isolation of the main components of lignocellulosic biomass remains challenging for value-added utilization. In this study, we used corn straw waste, a vast yet underexplored biomass from agricultural residues, as the raw material to extract high-purity cellulose nanosheets and recycle the lignin components as well-defined lignin nanotubes (LNTs) in a tandem process. The process consisted of a feasible dilute alkali-assisted wet ball milling treatment of steam-exploded corn straw into high-purity cellulose nanosheets and a lignin solution, which was further transferred into LNTs by a molecular assembly method. Purity, morphology, chemical structure, and thermal behavior of high-purity cellulose nanosheets and LNTs were examined. The 98.9 wt% purity of the high-purity cellulose nanosheets was achieved with a crystallinity of 36.9 %, providing a solid foundation for further chemical modification. The LNTs exhibited remarkable antioxidant activity, opening new avenues for the development of lignin-based functional materials and fundamental research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
期刊最新文献
Metaproteomics identifies key cell wall degrading enzymes and proteins potentially related to inter-field variability in fiber quality during flax dew retting Machine learning prediction of mechanical properties of bamboo by hemicelluloses removal Water resistant lignosulphonate-phenol-formaldehyde resin for mineral wool Green hybrid composites partially reinforced with flax woven fabric and coconut shell waste-based micro-fillers Nano- and microformulated botanicals for managing ticks and mites of medical and veterinary importance: Past, present, and future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1